Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T16:09:29.168Z Has data issue: false hasContentIssue false

A new melanistic variant of the caterpillar hunter Calosoma wilcoxi LeConte, 1848 from Texas, United States of America and a preliminary phylogeny of the genus Calosoma Weber, 1801 (Coleoptera: Carabidae)

Published online by Cambridge University Press:  18 July 2016

Jesse W. Ray
Affiliation:
United States Army Corps of Engineers, Los Angeles, California 90017, United States of America
Matthias Seidel
Affiliation:
Department of Entomology, National Museum in Prague, Cirkusova 1740, CZ-19300 Praha 9-Horni Pocernice, Czech Republic General Zoology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany Centrum für Naturkunde (CeNak), University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
Martin Husemann*
Affiliation:
General Zoology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany Centrum für Naturkunde (CeNak), University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
*
1Corresponding author (e-mail: martinhusemann@yahoo.de)

Abstract

Two aberrant ground beetle (Coleoptera: Carabidae) specimens from the genus Calosoma Weber, 1801 were collected in Waco, Texas, United States of America, in 2012–2013. The specimens, which are morphologically most similar to Calosoma wilcoxi LeConte, 1848, but are dark blue-black instead of the typical metallic green. We employed DNA barcoding and phylogenetic methods to confirm the identities of the aberrant specimens. Preliminary phylogenetic analyses of cytochrome oxidase subunit 1 (COI) sequences of central Texas and southwestern species place the aberrant specimens with 100% confidence as C. wilcoxi. The new variant of C. wilcoxi presumably occurs at low densities. Frequent collecting from 2011 to 2014 resulted in the discovery of only two of the aberrant coloured individuals among hundreds of typical green specimens. These specimens (to our knowledge) represent the first published record of melanistic Calosoma from North America. While the majority of North American species in the genus are naturally black, two of the most widely distributed and abundant species, C. scrutator (Fabricius, 1775) and C. wilcoxi, are typically green. We sequenced the aberrant form as well as all species co-occurring with the new colour morph at the collection locality and used records from GenBank and the Barcode of Life Data System to generate a preliminary phylogeny of the genus, which suggested that some of the currently established subgenera are likely not monophyletic.

Type
Systematics & Morphology
Copyright
© Entomological Society of Canada 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject Editor: Derek Sikes

References

Andujar, C., Serrano, J., and Gomez-Zurita, J. 2012. Winding up the molecular clock in the genus Carabus (Coleoptera: Carabidae): assessment of methodological decisions on rate and node age estimation. BMC Evolutionary Biology, 12: 40.CrossRefGoogle ScholarPubMed
Bousquet, Y. 2012. Catalog of the Geadephaga (Coleoptera, Adephaga) of America, north of Mexico. Zookeys, 245: 11722.CrossRefGoogle Scholar
Brakefield, P.M. 1985. Polymorphic Mullerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biological Journal of the Linnean Society, 26: 243267.Google Scholar
Burgess, A.F. 1911. Calosoma sycophanta: its life history, behavior, and successful colonization in New England. Bulletin of the United States Department of Agriculture, Bureau of Entomology, 101: 194.Google Scholar
Dajoz, R. 1997. Description et biologie d’un Callisthenes nouveau de la Sierra Nevada de Californie (Coleoptera: Carabidae). Nouvelle Revue d’Entomologie, 14: 6973.Google Scholar
Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9: 772.CrossRefGoogle ScholarPubMed
Davis, L., Bouvet, S., and Vernon, P. 2007. All year reproduction and possible thermal melanism in Amblystogenium pacificum (Coleoptera: Carabidae) on the sub-Antarctic Ile de la Possession (Iles Crozet). Polar Biology, 30: 253260.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294299.Google ScholarPubMed
Gibson, C.M., Kao, R.H., Blevins, K.K., and Travers, P.D. 2012. Integrative taxonomy for continental-scale terrestrial insect observations. Public Library of Science One, 7: e37528.Google ScholarPubMed
Gidaspow, T. 1959. North American caterpillar hunters of the genera Calosoma and Callisthenes (Coleoptera, Carabidae). Bulletin of the American Museum of Natural History, 116: 229343.Google Scholar
Guindon, S. and Gascuel, O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum likelihood. Systematic Biology, 52: 696704.CrossRefGoogle ScholarPubMed
Harris, A.C. 1988. Cryptic coloration and melanism in the sand burrowing beetle Chaerodes trachyscelides (Coleoptera: Tenebrionidae). Journal of the Royal Society of New Zealand, 18: 333339.Google Scholar
Hebert, P.D., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator . Proceedings of the National Academy of Science, 101: 1481214817.Google Scholar
Hendrickx, F., Backeljau, T., Dekoninck, W., Van Belleghem, S.M., Vandomme, V., and Vangestel, C. 2015. Persistent inter- and intraspecific gene exchange within a parallel radiation of caterpillar hunter beetles (Calosoma sp.) from the Galapagos. Molecular Ecology, 24: 31073121.Google Scholar
Jeannel, R. 1940. Les Calosomes, Memoires du Musée National d’Histoire Naturelle. Éditions du Musée, Paris, France.Google Scholar
Jong, P. W., Gussekloo, S.W.S., and Brakefield, P.M. 1996. Differences in thermal balance, body temperature, and activity between non-melanic and melanic two-spotted ladybird beetles (Adalia bipunctata) under controlled conditions. The Journal of Experimental Biology, 199: 26552666.CrossRefGoogle Scholar
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28: 16471649.Google Scholar
Lindroth, C.H. 1961. The ground beetles (Carabidae, excl. Cicindelidae) of Canada and Alaska, part 2. Opuscula Entomologica Supplementum, 20: 1200.Google Scholar
Mikkola, K. and Albrecht, A. 1988. The melanism of Adalia bipunctata around the Gulf of Finland as an industrial phenomenon. Annales Zoologici Fennici, 25: 177185.Google Scholar
Park, D.S., Suh, S.J., Oh, H.W., and Hebert, P.D. 2010. Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers. BMC Genomics, 11: 423.Google Scholar
Paxton, R.J., Thorén, P.A., Tengö, J., Estoup, A., and Pamilo, P. 1996. Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera: Andrenidae), using microsatellites. Molecular Ecology, 5: 511519.Google Scholar
Pearson, D.L., Knisley, C.B., Duran, D.P., and Kazilek, C.J. 2015. A field guide to the tiger beetles of the United States and Canada, 2nd edition, Oxford University Press, New York, New York, United States of America.Google Scholar
Pentinsaari, M., Hebert, P.D., and Mutanen, M. 2014. Barcoding beetles: a regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. Public Library of Science One, 9: e108651.Google ScholarPubMed
Ratcliffe, B.C. and Mico, E. 2001. A review of the Neotropical genus Neocorvico Ratcliffe & Mico, new genus (Coleoptera: Scarabaeidae: Cetoniinae: Gymnetini). The Coleopterists Bulletin, 55: 279296.Google Scholar
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Hohna, S., et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choices across large model space. Systematic Biology, 61: 539542.CrossRefGoogle ScholarPubMed
Su, Z.H., Imura, Y., and Osawa, S. 2005. Evolutionary history of Calosomina ground beetles (Coleoptera: Carabidae: Carabinae) of the world as deduced from sequence comparison of the mitochondrial ND5 gene. Gene, 360: 140150.CrossRefGoogle Scholar
Tower, W.L. 1906. An investigation of evolution in chrysomelid beetles of the genus Leptinotarsa . Carnegie Institute of Washington Publication, 48: 1320.Google Scholar