Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T20:30:23.016Z Has data issue: false hasContentIssue false

MULTIPLE RESISTANCE SHOWN BY FIELD STRAINS OF HOUSE FLY, MUSCA DOMESTICA (DIPTERA: MUSCIDAE), TO ORGANOCHLORINE, ORGANOPHOSPHORUS, CARBAMATE, AND PYRETHROID INSECTICIDES

Published online by Cambridge University Press:  31 May 2012

C. R. Harris
Affiliation:
Research Centre, Agriculture Canada, London, Ontario N6A 5B7
S. A. Turnbull
Affiliation:
Research Centre, Agriculture Canada, London, Ontario N6A 5B7
J. W. Whistlecraft
Affiliation:
Research Centre, Agriculture Canada, London, Ontario N6A 5B7
G. A. Surgeoner
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1

Abstract

Three house fly, Musca domestica L., strains, two from farms near Guelph, Ontario and one from a farm near Edmonton, Alberta were cultured and tested for their resistance to insecticides as compared with a susceptible laboratory strain. The two Guelph strains were resistant to the 7 organochlorine (OC) and 11 organophosphorus (OP) insecticides tested and to nearly all of the carbamate insecticides. One Guelph strain (A) which had been subjected to minimum pyrethrins pressure and no residual pyrethroid pressure was susceptible to pyrethrins and the 8 pyrethroid insecticides tested. The other Guelph strain (B), which had been subjected to intense pyrethrins–pyrethroid pressure, was resistant to pyrethrins and to all pyrethroids tested. The Edmonton strain had a history of insecticide exposure similar to the Guelph B strain and showed a similar resistance pattern. Resistance levels at the LD50 for the Guelph B strain, as compared with a susceptible laboratory strain, for the OP insecticides tested, ranged from ×50 for malathion to ×4.5 for dichlorvos; for the carbamates, from ×13.5 for bendiocarb to ×4.1 for methomyl; and for the pyrethroids, from ×55.6 for deltamethrin to ×18.7 for fenvalerate.

Résumé

Trois lignées de mouches domestiques, Musca domestica L., deux issues de fermes près de Guelph (Ontario) et une d'une ferme près d'Edmonton, Alberta, ont été cultivées et testées pour leur résistance à certains insecticides et comparées à une lignée de laboratoire sensible. Les deux lignées de Guelph sont résistantes aux 7 organochlorés (OC) et aux 11 organophosphorés (OP), ainsi qu'à la presque totalité des 5 carbamates, utilisés. Une lignée de Guelph (A), exposée à une dose minimale de pyréthrines sans effet résiduel, s'avère sensible aux pyréthrines et aux 8 insecticides pyréthrinoïdes testés. L'autre lignée de Guelph (B), soumise à une forte dose de pyréthrines–pyréthrinoïdes, s'avère résistante aux pyréthrines et à toutes les pyréthrinoïdes testées. La lignée d'Edmonton, exposée à des insecticides et doses analogues à ceux utilisés pour la lignée B de Guelph, manifeste un comportement de résistance similaire. Par rapport à une lignée sensible de laboratoire, les niveaux de résistance (DM50) de la lignée B de Guelph varient de 50 fois pour le malathion à 4,5 fois pour le dichlorvos (OP), de 13,5 pour le bendiocarb à 4,1 pour le méthomyl (carbamates) et de 54,5 pour la deltaméthrine à 18,7 pour le fenvalérate (pyréthrinoïdes).

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.Google Scholar
Brown, A.W.A. 1961. The challenge of insecticide resistance. Bull. ent. Soc. Am. 7: 619.Google Scholar
Finney, D.J. 1952. Probit Analysis. A Statistical Treatment of the Sigmoid Response Curve. Cambridge Univ. Press, Cambridge, England. 218 pp.Google Scholar
Georghiou, G.P. and Taylor, C. E.. 1977. Pesticide resistance as an evolutionary phenomenon. Proc. XV int. Congr. Ent., 1976: 759785.Google Scholar
Harris, C.R., Manson, G.F., and Mazurek, J. H.. 1962. Development of insecticidal resistance by soil insects in Canada. J. econ. Ent. 55: 777780.Google Scholar
Keiding, J. 1976. Development of resistance to pyrethroids in field populations of Danish houseflies. Pestic. Sci. 7: 283291.CrossRefGoogle Scholar
Keiding, J. 1977. Resistance in the housefly in Denmark and elsewhere. pp. 261–302 in Watson, D. L. and Brown, A. W. A. [Eds.], Pesticide Management and Insecticide Resistance. Academic Press, New York. 638 pp.Google Scholar
Künast, C. 1979. The development of permethrin resistance by houseflies (Musca domestica L.) in southern Germany. Z. angew. Zool. 66: 385390.Google Scholar
Künast, C. 1980. Problem of flies in stables. Studies on insecticide resistance in housefly (Musca domestica L.) in southern Germany. Berl. muench, tieraerztlo. Wochenschr. 93: 191193.Google Scholar
Künast, C. and Messner, K.. 1979. Studies on the present status of insecticide resistance in the housefly (Musca domestica L.) in southern Germany. Anz. Schädlingsk. pflanz. Umweltschutz. 52: 163167.Google Scholar
Roadhouse, L.A.O. 1953. Laboratory studies of DDT-resistant house flies (Diptera) in Canada. Can. Ent. 85: 340346.Google Scholar
Skovmand, O. and Keiding, J.. 1978. Insecticide resistance in houseflies. Danish pest infestation lab. ann. rept. 1978: 4349.Google Scholar
Surgeoner, G.A. 1979. Evidence of ovicidal activity by fumigant action using chlorpyrifos for control of Haematopinus suis (Anoplura: Haematopinidae). Proc. ent. Soc. Ont. 110: 37 (Published 1980).Google Scholar