Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-22T22:04:28.206Z Has data issue: false hasContentIssue false

Molecular comparisons of alphabaculovirus-based products: Gypchek with Disparvirus (Lymantria dispar) and TM BioControl-1 with Virtuss (Orgyia pseudotsugata)

Published online by Cambridge University Press:  02 April 2012

Jianhua Zhang
Affiliation:
Sylvar Technologies Inc., P.O. Box 636, Station A Fredericton, New Brunswick, Canada E3B 5A6
Renée Lapointe
Affiliation:
Sylvar Technologies Inc., P.O. Box 636, Station A Fredericton, New Brunswick, Canada E3B 5A6
David Thumbi
Affiliation:
Sylvar Technologies Inc., P.O. Box 636, Station A Fredericton, New Brunswick, Canada E3B 5A6
Benoit Morin
Affiliation:
Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, P.O. Box 4000, Fredericton, New Brunswick, Canada E3B 5P7
Christopher J. Lucarotti*
Affiliation:
Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, P.O. Box 4000, Fredericton, New Brunswick, Canada E3B 5P7
*
1 Corresponding author (e-mail: Christopher.Lucarotti@NRCan-RNCan.gc.ca).

Abstract

Gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), multicapsid nucleopolyhedrovirus (LdMNPV) has been registered as a microbial pest-control product in the United States (Gypchek®) and Canada (Disparvirus®). Similarly, Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough) (Lepidoptera: Lymantriidae), multicapsid nucleopolyhedrovirus (OpMNPV) is registered in the United States and Canada as TM BioControl-1® and a product derived from TM BioControl-1 (Virtuss®) is also registered in Canada. To determine changes that may have occurred in these products over time, we compared DNA from Gypchek with Disparvirus and DNA from TM BioControl-1 with Virtuss using restriction fragment length polymorphism (RFLP) analysis. Gypchek and Disparvirus showed the same RFLP banding patterns when viral genomic DNA was digested with BamH I, EcoR V, and Hind III and only a single band difference at approximately 1.6 kilobase (kb) when digested with Bgl II. TM BioControl-1 and Virtuss showed no differences in genomic DNA when digested with Bgl II, Sam I or Hind III. Twelve viral open reading frames (ORFs) were amplified from Gypchek and Disparvirus and nine from TM BioControl-1 and Virtuss by polymerase chain reactions (PCR). The amplified ORFs ranged from highly conserved (polyhedrin) to least conserved (vp91 capsid associated protein). The products were sequenced and the deduced protein products compared. Amino acid sequences deduced from the sequenced PCR products indicated that 8 of the 12 proteins were identical in the two LdMNPV products. The four proteins showing minor sequence variations were DNA polymerase, LEF-8, P74 envelope protein, and VP 91 capsid associated protein. No differences were detected in the protein products deduced from the nine sequenced ORFs from TM BioControl-1 and Virtuss. Comparative RFLP and protein phylogenetic analyses of Gypchek with Disparvirus and TM BioControl-1 with Virtuss revealed little difference between the respective LdMNPV and OpMNPV populations that make up these product pairs.

Résumé

Le virus à capsides multiples de la nucléopolyhédrose de la spongieuse, Lymantria dispar (L.) (Lepidoptera : Lymantriidae), (LdMNPV) est enregistré comme produit microbien antiparasitaire aux États-Unis (GypcheckMD) et au Canada (DisparvirusMD). De même, le virus à capsides multiples de la nucléopolyhédrose de la chenille à houppes du sapin Douglas, Orgyia pseudotsugata (McDunnough) (Lepidoptera : Lymantriidae), (OpMNPV) est enregistré aux États-Unis et au Canada sous le nom de TM BioControl-1MD; il existe aussi un produit dérivé de TM BioControl-1 (VirtussMD) au Canada. Afin de déterminer les changements qui ont pu survenir dans ces produits dans le temps, nous comparons l'ADN de Gypcheck et de Disparvirus ainsi que l'ADN de TM BioControl-1 et de Virtuss par une analyse du polymorphisme de la longueur des fragments de restriction (RFLP). Gypcheck et Disparvirus possèdent les mêmes patrons de bandes lorsque l'ADN viral génomique est digéré avec BamH I, EcoR V et Hind III et une seule différence de bande à approximativement 1,6 kb avec une digestion avec Bgl II. TM BioControl-1 et Virtuss ne montrent aucune différence d'ADN génomique lors de digestions avec Bgl II, Sam I ou Hind III. Douze cadres ouverts de lecture (ORF) viraux ont été amplifiés chez Gypcheck et Disparvirus et neuf cadres chez TM BioControl-1 et Virtuss par amplification en chaîne par polymérase (PCR). Les ORF amplifiés varient de fortement conservés (polyhédrine) à faiblement conservés (protéine vp91 associée à la capside). Les produits ont été séquencés et les produits protéiniques obtenus comparés. Les séquences d'acides aminés obtenues des produits séquencés de la PCR montrent que huit des 12 protéines sont identiques dans les deux produits de LdMNPV. Les quatre protéines qui montrent des variations mineures de séquence sont l'ADN polymérase, LEF-8, la protéine P74 de l'enveloppe et la protéine VP 91 associée à la capside. Aucune différence n’est détectée dans les produits protéiniques des neuf ORF séquencés de TM BioControl-1 et Virtuss. Des analyses comparatives de RFLP et des analyses phylogénétiques des protéines de Gypcheck et de Disparvirus, de même que de TM BioControl-1 et Virtuss, montrent peu de différences entre les populations de LdMNPV et de OpMNPV qui constituent ces paires de produits.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, C.H., Russell, R.L.Q., Funk, C.J., Evans, J.T., Harwood, S.H., and Rohrmann, G.F. 1997. The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome. Virology, 229: 381399. PMID:9126251 doi:10.1006/viro.1997.8448.CrossRefGoogle ScholarPubMed
Burland, T.G. 2000. DNASTAR's Lasergene sequence analysis software. Methods in Molecular Biology, 132: 7191.Google ScholarPubMed
Cunningham, J.C. and Kaupp, W.J. 1995. Insect viruses. In Forest pest insects in Canada. Edited by Armstrong, J.A. and Ives, W.G.H.Natural Resources Canada, Ottawa, Ontario. pp. 327340.Google Scholar
Herniou, E.A., Luque, T., Chen, X., Vlak, J.M., Winstanley, D., Cory, J.S., and O'Reilly, D.R. 2001. Use of whole genome sequence data to infer baculovirus phylogeny. Journal of Virology, 75: 81178126. PMID:11483757 doi:10.1128/JVI.75. 17.8117-8126.2001.CrossRefGoogle ScholarPubMed
Herniou, E.A., Olszewski, J.A., O'Reilly, D.R., and Cory, J.S. 2004. Ancient coevolution of baculoviruses and their insect hosts. Journal of Virology, 78: 32443251. PMID:15016845 doi:10.1128/JVI.78.7.3244-3251.2004.CrossRefGoogle ScholarPubMed
Jehle, J.A., Blissard, G.W., Bonning, B.C., Cory, J.S., Herniou, E.A., Rohrmann, G.F., et al. 2006. On the classification and nomenclature of baculoviruses: a proposal for revision. Archives of Virology, 151: 12571266. PMID:16648963 doi:10.1007/s00705-006-0763-6.CrossRefGoogle ScholarPubMed
Kuzio, J., Pearson, M.N., Harwood, S.H., Funk, C.J., Evans, J.T., Slavicek, J.M., and Rohrmann, GF. 1999. Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar. Virology, 253: 1734. PMID:9887315 doi:10.1006/viro.1998.9469.CrossRefGoogle ScholarPubMed
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23: 29472948. PMID:17846036 doi:10.1093/bioinformatics/btm404.CrossRefGoogle ScholarPubMed
Lynn, D.E., Dougherty, E.M., McClintock, J.T., and Shapiro, M. 1989. Comparative replication of Lymantria dispar nuclear polyhedrosis virus strains in three continuous-culture cell lines. Applied and Environmental Microbiology, 55: 10491051. PMID:16347901.CrossRefGoogle ScholarPubMed
Martignoni, M.E. 1999. History of TM BioControl-1: the first registered virus-based product for control of a forest insect. American Entomologist, 45: 3037.CrossRefGoogle Scholar
Moreau, G., and Lucarotti, C.J. 2007. A brief review of the past use of baculoviruses for the management of eruptive forest defoliators and recent developments on a sawfly virus in Canada. The Forestry Chronicle, 83: 105112.CrossRefGoogle Scholar
Moreau, G., Lucarotti, C.J., Kettela, E.G., Thurston, G.S., Holmes, S., Weaver, C., et al. 2005. Aerial application of nucleopolyhedrovirus induces decline in increasing and peaking populations of Neodiprion abietis. Biological Control, 33: 6573. doi:10.1016/j.biocontrol.2005.01.008.CrossRefGoogle Scholar
Nai, Y.S., Wu, C.Y., Wang, T.C., Chen, Y.R., Lau, W.H., Lo, C.F., et al. 2010. Genomic sequencing and analyses of Lymantria xylina multiple nucleopolyhedrovirus. BMC Genomics, 11: 116. Available from http://www.biomedcentral.com/1471-2164/11/116 [accessed 4 September 2010].CrossRefGoogle ScholarPubMed
Reed, C., Otvos, I.S.Reardon, R., Ragenovich, I., and Williams, H.L. 2003. Effects of long-term storage on the stability of OpMNPV DNA contained in TM Biocontrol-1. Journal of Invertebrate Pathology, 84: 104113. PMID:14615219 doi:10.1016/j.jip.2003.08.002.CrossRefGoogle ScholarPubMed
Slavicek, J.M. 1991. Temporal analysis and spatial mapping of Lymantria dispar nuclear polyhedrosis virus transcripts and in vitro translation polypeptides. Virus Research, 20: 223236. PMID:1685048 doi:10.1016/0168-1702(91)90077-9.CrossRefGoogle ScholarPubMed
Slavicek, J.M., Podgwaite, J., and Lanner-Herrera, C. 1992. Properties of two Lymantria dispar nuclear polyhedrosis virus isolates obtained from the microbial pesticide Gypchek. Journal of Invertebrate Pathology, 59: 142148. doi:10.1016/0022-2011(92)90024-X.CrossRefGoogle Scholar