Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-02T05:03:46.609Z Has data issue: false hasContentIssue false

Long-term fruit fly monitoring and impact of the systems approach on richness and abundance

Published online by Cambridge University Press:  19 July 2021

Mayara R. de Araujo
Affiliation:
Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), 13418-900Piracicaba, São Paulo, Brazil
David dos S. Martins
Affiliation:
Departamento de Entomologia, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER), Caixa Postal 01146, 29001-970, Vitória, Espírito Santo, Brazil
Maurício J. Fornazier
Affiliation:
Departamento de Entomologia, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (INCAPER), Caixa Postal 01146, 29001-970, Vitória, Espírito Santo, Brazil
Keiko Uramoto
Affiliation:
Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), 13418-900Piracicaba, São Paulo, Brazil
Paulo S.F. Ferreira
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Avenida Peter Henry Rolfs s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
Roberto A. Zucchi
Affiliation:
Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), 13418-900Piracicaba, São Paulo, Brazil
Wesley A.C. Godoy*
Affiliation:
Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), 13418-900Piracicaba, São Paulo, Brazil
*
*Corresponding author. Email: wacgodoy@usp.br

Abstract

We investigated ecological patterns of richness and abundance of Anastrepha fruit flies, based on a long-term series with a dataset from 1998 to 2010, subdivided into four subseries describing pest management through the systems approach (integration of different measures, at least two of which act independently, with cumulative effects), and its impact on abundance and diversity of fruit flies. Richness and abundance were influenced by time and distance but to different extents. Spatio-temporal analysis taking into account the implementation of the systems approach revealed clear effects of the pest management on fruit fly richness and abundance. However, abundance was affected by the systems approach three years before richness was. Abundance and richness also showed different relationships with time and distance between orchards and forest. The Gompertz model, used to describe the relationship between area and species richness, was the function that showed the best fit to the data. The richness-partitioning analysis, which decomposes beta diversity, indicated different distributions of richness values and predictions for additive partitioning that were directly associated with the implementation of the systems approach. The spectral analysis projected different trends for peaks, indicating that the systems approach is able to delay the time for new population peaks of fruit flies.

Type
Research Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Julia Mlynarek

References

Aguiar-Menezes, E.L., Souza, S.A.S., Lima-Filho, M., Barros, H.C., Ferrara, F.A.A., Eurípedes, E., and Menezes, B. 2008. Análise faunística de moscas-das-frutas (Diptera: Tephritidae) nas regiões norte e noroeste do Estado do Rio de Janeiro. Neotropical Entomology, 37: 814. https://doi.org/10.1590/S1519-566X2008000100002.CrossRefGoogle Scholar
Almeida, L.M.B., Coelho, J.B., Uchoa, M.A., and Gisloti, L.J. 2019. Diversity of fruit flies (Diptera: Tephritoidea) and their host plants in a conservation unit from midwestern Brazil. Florida Entomologist, 102: 562570. https://doi.org/10.1653/024.102.0333.CrossRefGoogle Scholar
Aluja, M. 1999. Fruit fly (Diptera: Tephritidae) research in Latin America: myths, realities and dreams. Anais da Sociedade Entomológica do Brasil, 28: 565579. https://doi.org/http://dx.doi.org/10.1590/S0301-80591999000400001.CrossRefGoogle Scholar
Aluja, M., Celedonio-Hurtado, H., Liedo, P., Cabrera, M., Castillo, F., Guillén, J., and Rios, E. 1996. Seasonal population fluctuations and ecological implications for management of Anastrepha fruit flies (Diptera: Tephritidae) in commercial mango orchards in southern Mexico. Journal of Economic Entomology, 89: 654667. https://doi.org/10.1093/jee/89.3.654.CrossRefGoogle Scholar
Araujo, M.R., Uramoto, K., Ferreira, E.N.L., Mesquita Filho, W., Walder, J.M.M., Savaris, M., and Zucchi, R.A. 2019. Fruit fly (Diptera: Tephritidae) diversity and host relationships in diverse environments estimated with two sampling methods. Environmental Entomology, 48: 227233. https://doi.org/10.1093/ee/nvy177.CrossRefGoogle ScholarPubMed
Chao, A., Chiu, C.H., and Hsieh, T.C. 2012. Proposing a resolution to debates on diversity partitioning. Ecology, 93: 20372051.10.1890/11-1817.1CrossRefGoogle ScholarPubMed
Crawley, M.J. 2013. The R book. Second edition. Wiley Online Library, West Sussex, United Kingdom.Google Scholar
Dinis, S., Prado, P.I., and Lewinsohn, T.M. 2010. Species richness in natural and disturbed habitats: Asteraceae and flower-head insects (Tephritidae: Diptera). Neotropical Entomology, 39: 163171.10.1590/S1519-566X2010000200004CrossRefGoogle Scholar
Ferreira, C.P. and Godoy, W.A.C. 2014. Ecological modelling applied to entomology. Springer Nature, Cham, Switzerland. https://doi.org/10.1007/978-3-319-06877-0_1.CrossRefGoogle Scholar
Garcia, A.G., Araujo, M.R., Uramoto, K., Walder, J.M.M., and Zucchi, R.A. 2017. Geostatistics and geographic information system to analyze the spatial distribution of the diversity of Anastrepha species (Diptera: Tephritidae): the effect of forest fragments in an urban area. Environmental Entomolomology, 46: 11891194. https://doi.org/10.1093/ee/nvx145.CrossRefGoogle Scholar
Garcia, F.R.M., Campos, J.V., and Corseuil, E. 2003. Análise faunística de espécies de moscas-das-frutas (Diptera: Tephritidae) na região oeste de Santa Catarina. Neotropical Entomology, 32: 421426. https://doi.org/10.1590/S1519-566X2003000300006.CrossRefGoogle Scholar
Gnanvossou, D., Hanna, R., Goergen, G., Salifu, D., Tanga, C.M., Mohamed, S.A., and Ekesi, S. 2017. Diversity and seasonal abundance of tephritid fruit flies in three agro-ecosystems in Benin, West Africa. Journal of Applied Entomology, 141: 798809. https://doi.org/10.1111/jen.12429.CrossRefGoogle Scholar
Gurr, G.M., Wratten, S.D., and Michael Luna, J. 2003. Multi-function agricultural biodiversity: pest management and other benefits. Basic Applied Ecology, 4: 107116. https://doi.org/10.1078/1439-1791-00122.CrossRefGoogle Scholar
Henry, M. and Stevens, H. 2009. A primer of ecology with R. Springer, New York, New York, United States of America.Google Scholar
Johnson, D.M., Bjørnstad, O.N., and Liebhold, A.M. 2006. Landscape mosaic induces travelling waves of insect outbreaks. Oecologia, 148: 5160. https://doi.org/10.1007/s00442-005-0349-0.CrossRefGoogle Scholar
Jost, L., DeVries, P., Wall, T., Greeney, H., Chao, A., and Ricotta, C. 2010. Partitioning diversity for conservation analyses. Diversity and Distribution, 16: 6576.10.1111/j.1472-4642.2009.00626.xCrossRefGoogle Scholar
Kemp, J.E. and Ellis, A.G. 2017. Significant local-scale plant–insect species richness relationship independent of abiotic effects in the temperate Cape floristic region biodiversity hotspot. PLOS One, 12: e0168033. https://doi.org/10.1371/journal.pone.0168033.CrossRefGoogle ScholarPubMed
Legendre, P. 2019. A temporal beta-diversity index to identify sites that have changed in exceptional ways in space–time surveys. Ecology and Evolution, 9: 35003514. https://doi.org/10.1002/ece3.4984.CrossRefGoogle ScholarPubMed
Legendre, P. and Gauthier, O. 2014. Statistical methods for temporal and space–time analysis of community composition data. Proceedings of the Royal Society B: Biological Sciences, 281: 20132728. https://doi.org/10.1098/rspb.2013.2728.Google ScholarPubMed
Lomolino, M. 2001. The species–area relationship: new challenges for an old pattern. Progress in Physical Geography: Earth and Environment, 25: 121.Google Scholar
Lopes, G.N., Souza-Filho, M.F., Gotelli, N.J., Lemos, L.J.U., Godoy, W.A.C., and Zucchi, R.A. 2015. Temporal overlap and co-occurrence in a guild of sub-tropical tephritid fruit flies. PLOS One, 10: e0132124. https://doi.org/10.1371/journal.pone.0132124.CrossRefGoogle Scholar
Lundgren, J.G. and Fausti, S.W. 2015. Trading biodiversity for pest problems. Science Advances, 1: e1500558. https://doi.org/10.1126/sciadv.1500558.CrossRefGoogle ScholarPubMed
Marsaro Júnior, A.L., Nascimento, D.B., Ronchi-Teles, B., and Adaime, R. 2012. Faunistic analysis of the species of Anastrepha Schiner (Diptera: Tephritidae) in three municipalities of the state of Roraima, Brazil. Brazilian Journal of Biology, 72: 813819.CrossRefGoogle ScholarPubMed
Martins, D.S., Alves, F.L., and Zucchi, R.A. 1993. Levantamento de moscas-das-frutas (Diptera: Tephritidae) na cultura do mamoeiro no Norte do Espírito Santo. Anais da Sociedade Entomologica do Brasil, 22: 373380.CrossRefGoogle Scholar
Martins, D.S. and Fornazier, M.J. 2014. System approach: tecnologia que viabilizou a exportação do mamão brasileiro para os Estados Unidos. Incaper em Revista, 4: 8495.Google Scholar
Martins, D.S., Ventura, J.A., Lima, R.C.A., Culik, M.P., Costa, H., and Ferreira, P.S.F. 2012. Interaction between Papaya meleira virus (PMeV) infection of papaya plants and Mediterranean fruit fly infestation of fruits. Crop Protection, 36: 710. https://doi.org/10.1016/j.cropro.2012.01.001.CrossRefGoogle Scholar
Matthews, T.J., Triantis, K.A., Whittaker, R.J., and Guilhaumon, F. 2019. sars: an R package for fitting, evaluating and comparing species–area relationship models. Ecography, 42: 14461455. https://doi.org/10.1111/ecog.04271.CrossRefGoogle Scholar
Mazzi, D. and Dorn, S. 2012. Movement of insect pests in agricultural landscapes. Annals of Applied Biology, 160: 97113. https://doi.org/10.1111/j.1744-7348.2012.00533.x.CrossRefGoogle Scholar
Monteiro, L.B., Tomba, J.A.S., Nishimura, G., Monteiro, R.S., Foelkel, E., and Lavigne, C. 2019. Faunistic analyses of fruit fly species (Diptera: Tephritidae) in orchards surrounded by Atlantic forest fragments in the metropolitan region of Curitiba, Paraná state, Brazil. Brazilian Journal of Biology, 79: 395403. https://doi.org/10.1590/1519-6984.178458.CrossRefGoogle ScholarPubMed
Montoya, P., Flores, S., and Toledo, J. 2008. Effect of rainfall and soil moisture on survival of adults and immature stages of Anastrepha ludens and A. obliqua (Diptera: Tephritidae) under semi-field conditions. Florida Entomology, 91: 643650. https://doi.org/10.1653/0015-4040-91.4.643.Google Scholar
Nascimento, A.S., Zucchi, R.A., Morgante, J.S., and Malavasi, A. 1982. Dinâmica populacional das moscas-das-frutas do gênero Anastrepha (Dip., Tephritidae) no Recôncavo Baiano. II. Flutuação populacional. Pesquisa Agropecuária Brasileira, 17: 969980.Google Scholar
Novotny, V., Miller, S.E., Hulcr, J., Drew, R.A.I., Basset, Y., Janda, M., et al. 2007. Low beta diversity of herbivorous insects in tropical forests. Nature, 448: 692695. https://doi.org/10.1038/nature06021.CrossRefGoogle ScholarPubMed
Oliveira, I. de, Uchoa, M.A., Pereira, V.L., Nicácio, J., and Faccenda, O. 2019. Anastrepha species (Diptera: Tephritidae): Patterns of spatial distribution, abundance, and relationship with weather in three environments of midwestern Brazil. Florida Entomologist, 102: 113120. https://doi.org/10.1653/024.102.0118.Google Scholar
Pathak, P.D., Mandavgane, S.A., and Kulkarni, B.D. 2019. Waste to wealth: a case study of papaya peel. Waste and Biomass Valorization, 10: 17551766. https://doi.org/10.1007/s12649-017-0181-x.CrossRefGoogle Scholar
Prout, T. and McChesney, F. 1985. Competition among immatures affects their adult fertility: population dynamics. American Naturalist, 126: 521558. https://doi.org/10.1086/284436.CrossRefGoogle Scholar
Querino, R.B., Maia, J.B., Lopes, G.N., Alvarenga, C.D., and Zucchi, R.A. 2014. Fruit fly (Diptera: Tephritidae) community in guava orchards and adjacent fragments of native vegetation in Brazil. Florida Entomologist, 97: 778786. https://doi.org/10.1653/024.097.0260.CrossRefGoogle Scholar
Quesada-Moraga, E., Valverde-García, P., and Garrido-Jurado, I. 2012. The effect of temperature and soil moisture on the development of the preimaginal Mediterranean fruit fly (Diptera: Tephritidae). Environmental Entomology, 41: 966970. https://doi.org/10.1603/en12029.CrossRefGoogle Scholar
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/ Google Scholar
Reid, W.V. 1998. Biodiversity hotspots. Trends in Ecology and Evolution, 13: 275280. https://doi.org/10.1016/S0169-5347(98)01363-9.CrossRefGoogle ScholarPubMed
Rico-Gray, V. and Oliveira, P.S. 2007. The ecology and evolution of ant–plant interactions. The University of Chicago Press, Chicago, Illinois, United States of America.10.7208/chicago/9780226713540.001.0001CrossRefGoogle Scholar
Rwomushana, I., Ekesi, S., Ogol, C.K.P.O., and Gordon, I. 2009. Mechanisms contributing to the competitive success of the invasive fruit fly Bactrocera invadens over the indigenous mango fruit fly, Ceratitis cosyra: the role of temperature and resource pre-emption. Entomologia Experamentalis et Applicata, 133: 2737.10.1111/j.1570-7458.2009.00897.xCrossRefGoogle Scholar
Senger, S.E., Tyson, R., Roitberg, B.D., Thistlewood, H.M.A., Harestad, A.S., and Chandler, M.T. 2009. Influence of habitat structure and resource availability on the movements of Rhagoletis indifferens (Diptera: Tephritidae). Environmental Entomology, 38: 823835. https://doi.org/10.1603/022.038.0336.CrossRefGoogle Scholar
Shimadzu, H., Dornelas, M., and Magurran, A.E. 2015. Measuring temporal turnover in ecological communities. Methods in Ecology and Evolution, 6: 13841394. https://doi.org/10.1111/2041-210X.12438.CrossRefGoogle Scholar
Tang, C.S. 1973. Localization of benzyl glucosinolate and thioglucosidase in Carica papaya fruit. Phytochemistry, 12: 769773. https://doi.org/10.1016/0031-9422(73)80676-4.CrossRefGoogle Scholar
Trassato, L.B., Lima, A.C.S., Monteiro Neto, J.L.L., Bandeira, H.F.S., Silva, E.S., and Striicker, A. 2015. Flutuação populacional de Anastrepha striata (Diptera: Tephritidae) em pomares comerciais de goiabeira. Revista Agroambiente, 9: 317326. https://revista.ufrr.br/agroambiente/article/view/2502.Google Scholar
Uchôa, M.A. and Nicácio, J. 2010. New records of Neotropical fruit flies (Tephritidae), lance flies (Lonchaeidae) (Diptera: Tephritoidea), and their host plants in the South Pantanal and adjacent areas, Brazil. Annals of the Entomological Society of America, 103: 723733. https://doi.org/10.1603/an09179.CrossRefGoogle Scholar
Uramoto, K., Martins, D.S., and Zucchi, R.A. 2008. Fruit flies (Diptera, Tephritidae) and their associations with native host plants in a remnant area of the highly endangered Atlantic rain forest in the state of Espírito Santo, Brazil. Bulletin of Entomological Research, 98: 457466. https://doi.org/10.1017/S0007485308005774.CrossRefGoogle Scholar
Veech, J.A. and Crist, T.O. 2010. Toward a unified view of diversity partitioning. Ecology, 91: 19881992.CrossRefGoogle Scholar
Verberk, W.C. 2011. Explaining general patterns in species abundance and distributions. Nature Education Knowledge, 3: 38.Google Scholar
Wagner, H.H. and Edwards, P.J. 2001. Quantifying habitat specificity to assess the contribution of a patch to species richness at a landscape scale. Landscape Ecology, 16: 121131.CrossRefGoogle Scholar
Zucchi, R.A. and Moraes, R.C.B. 2021. Fruit flies in Brazil: Anastrepha species, their host plants, and parasitoids [online]. Available from http://www.lea.esalq.usp.br/anastrepha/.Google Scholar