Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T00:04:39.010Z Has data issue: false hasContentIssue false

LIFE HISTORY CHARACTERISTICS OF ELACHERTUS CACOECIAE (HYMENOPTERA: EULOPHIDAE), AN ECTOPARASITOID OF SPRUCE BUDWOR LARVAE, CHORISTONEURA FUMIFERANA (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Jeffrey G. Fidgen
Affiliation:
Population Ecology Group, Faculty of Forestry and Environmental Management, University of New Brunswick, Bag Service 44555, Fredericton, New Brunswick, Canada E3B 6C2
Eldon S. Eveleigh*
Affiliation:
Canadian Forest Service, Atlantic Forestry Centre, Natural Resources Canada, P.O. Box 4000, Fredericton, New Brunswick, Canada E3B 5P7
*
1 Corresponding author. Also affiliated with the Population Ecology Group, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada, E3B 6C2.

Abstract

We carried out a 2-year study to elucidate the biology of the gregarious, idiobiont ectoparasitoid Elachertus cacoeciae (Howard) by placing (implanting) laboratory-reared spruce budworm larvae [Choristoneura fumiferana (Clemens)] on current-year balsam fir (Abies balsamea L.) shoots in the field, simulating low (endemic) densities of the budworm. Spring female E. cacoeciae attacked fourth-, fifth-, and sixth-instar budworm larvae, beginning near the predicted peak of the fourth instar and ending about 10–12 days after the predicted peak of the pupal stage of the wild budworm population. The mean (±SE) brood size of spring females was 2.9 ± 0.3 E. cacoeciae pupae per host. The proportion of females increased during the season, with many broods consisting of 100% females late in the season. In 1994 and 1995, the mean proportion of females was 0.74 ± 0.05 and 0.79 ± 0.05, respectively. In the laboratory, development time from eggs to adults was approximately 20 days at 20.6 °C. Adult males provided with honey water lived 43.6 ± 3.2 days, whereas females provided with hosts and honey water lived 90.1 ± 6.6 days. Spring females had a pre-oviposition period of 11.5 ± 1.3 days, resulting in a generation time (egg to egg) of ~31 days. The oviposition period lasted 76.3 ± 7.7 days during which time spring females parasitized 19.2 ± 1.9 hosts, and produced a clutch size of 4.9 ± 0.4 eggs per host, for a lifetime fecundity of 96.8 ± 14.7 eggs. The post-oviposition period was 18.5 ± 3.7 days. Throughout their lifetime, spring females host fed only (host feeding without oviposition) on an additional 9.3 ± 1.9 hosts. Approximately 2% of pupae developing from spring females overwintered, whereas approximately 95% of pupae developing from summer females overwintered. Laboratory results for summer females suggest that they may be adapted to parasitizing alternate host(s) rather than spruce budworm.

Résumé

Pendant 2 ans, nous avons étudié la biologie de l’ectoparasitoïde grégaire idiobionte Elachertus cacoeciae (Howard). Des larves de la Tordeuse des bourgeons de l’épinette [Choristoneura fumiferana (Clemens)] élevées en laboratoire ont été implantées, au milieu naturel, sur des pousses de l’année courante du Sapin baumier (Abies balsamea L.) à des densités faibles, simulant les densités endémiques. Les femelles de printemps d’E. cacoeciae ont attaqué les larves de quatrième, cinquième et sixième stades de la tordeuse, à partir de l’époque de densité maximale prédite pour les larves de quatrième stade jusqu’à 10–12 jours après la période de densité maximale prédite pour les chrysalides au sein de la population indigène de la tordeuse. La progéniture moyenne par femelle de printemps (± écart type) a été évalué à 2,9 ± 0,3 nymphes d’E. cacoeciae par hôte. La proportion des femelles a augmenté au cours de la saison et la progéniture issue de plusieurs pontes comportât 100% de femelles tard dans la saison. La proportion de femelles a été de 0,74 + 0,05 en 1994 et de 0,79 ± 0,05 en 1995. En laboratoire, le développement du stade oeuf au stade adulte a duré environ 20 jours à 20,6 °C. Les mâles adultes nourris de miel coupé d’eau ont vécu 43,6 ± 3,2 jours, alors que les femelles mises en présence d’hôtes et de miel coupé d’eau ont vécu 90,1 ± 6,6 jours. Les femelles de printemps subissaient une période de pré-ponte de 11,5 ± 1,3 jours, avec le résultat qu’une génération (oeuf à oeuf) durait environ 31 jours. La période de ponte a été évaluée à 76,3 ± 7,7 jours au cours desquels les femelles de printemps ont parasité 19,2 ± 1,9 hôtes et produit des masses de 4,9 ± 0,4 oeufs/hôte, pour une fécondité totale de 96,8 ± 14,7 oeufs au cours de la vie d’une femelle. La période d’après-ponte était de 18,5 ± 3,7 jours. Au cours de leur vie, les femelles de printemps ont aussi attaqué (alimentation sans ponte) 9,3 ± 1,9 hôtes supplémentaires. Environ 2% des nymphes issues des femelles de printemps ont entrepris une diapause, alors qu’environ 95% des nymphes issues des femelles d’été ont entrepris une diapause. Les résultats obtenus en laboratoire semblent indiquer que les femelles d’été sont peut-être adaptées à parasiter d’autres hôtes que la tordeuse.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeschlimann, J.P. 1969. Contribution à l'étude de trois espèces d'eulophides (Hym.: Chalcidoidea), parasites de la tordeuse grise de mélèze, Zeiraphera diniana Guenée (Lep.: Tortricidae) en Haute-Engadine. Entomophaga 14: 261320.CrossRefGoogle Scholar
Barrett, B.A., and Brunner, J.F.. 1990. Types of parasitoid-induced mortality, host stage preferences, and sex ratios exhibited by Pnigalio flavipes (Hymenoptera: Eulophidae) using Phyllonorycter elmaella (Lepidoptera: Gracillariidae) as a host. Environmental Entomology 19: 803807.CrossRefGoogle Scholar
Baskerville, G.L., and Emin, P.. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50: 514517.CrossRefGoogle Scholar
Bryan, G. 1983. Seasonal biological variation in some leaf miner parasites in the genus Achrysocharoides (Hymenoptera: Eulophidae). Ecological Entomology 8: 259270.CrossRefGoogle Scholar
Carolin, V.M., and Coulter, W.K.. 1959. The occurrence of insect parasites of Choristoneura fumiferana (Clem.) in Oregon. Journal of Economic Entomology 52: 550555.CrossRefGoogle Scholar
Clausen, C. P. 1940. Entomophagous Insects. McGraw-Hill Book Company, Inc, New York.Google Scholar
DeBach, P., and Rosen, D.. 1991. Biological Control by Natural Enemies. 2nd ed. Cambridge University Press, Cambridge, England.Google Scholar
Dowden, P.B., Buchanan, W.D., and Carolin, V.M., 1948. Natural-control factors affecting the spruce budworm. Journal of Economic Entomology 41: 457464.Google Scholar
Dowden, P.B., Carolin, V.M., and Dirks, C.O.. 1950. Natural control factors affecting the spruce budworm in the Adirondacks during 1946–1948. Journal of Economic Entomology 43: 774783.CrossRefGoogle Scholar
Eveleigh, E., Royama, T., Lucarotti, C., McCarthy, P., Morin, B., and Pollock, S.. 1994. Studies on endemic spruce budworm populations in New Brunswick. p. 2in Carroll, A.L., and Raske, A.G. (Eds.), Proceedings of the Eastern Spruce Budworm Research Work Conference, St. John's, Nfld. (Abstract).Google Scholar
Eveleigh, E., Royama, T., Lucarotti, C., McCarthy, P., Morin, B., and Pollock, S.. 1997. Endemic spruce budworm populations in New Brunswick. p. 3in Régnière, J., and Delisle, J. (Eds.), Proceedings of the Eastern Spruce Budworm Research Work Conference, Québec City. (Abstract).Google Scholar
Fidgen, J.G. 1997. Biology of Elachertus cacoeciae, a parasitoid of spruce budworm, Choristoneura fumiferana. M.Sc.F. thesis, University of New Brunswick, Fredericton.Google Scholar
Flanders, S.E. 1950. Regulation of ovulation and egg disposal in the parasitic Hymenoptera. The Canadian Entomologist 82: 134140.CrossRefGoogle Scholar
Funke, B.R. 1983. Mold control for insect-rearing media. Bulletin of the Entomological Society of America 29: 4144.CrossRefGoogle Scholar
Godfray, H.C.J., and Hardy, I.C.W.. 1993. Sex ratio and virginity in haplodiploid insects. pp. 402417in Wrensch, D.L., and Ebbert, M.A. (Eds.), Evolution and Diversity of Sex Ratio in Insects and Mites. Chapman and Hall, Inc., New York.Google Scholar
Godfray, H.C.J., and Shaw, M.R.. 1987. Seasonal variation in the reproductive strategy of the parasitic wasp Eulophus larvarum (Hymenoptera: Chalcidoidea: Eulophidae). Ecological Entomology 12: 251256.CrossRefGoogle Scholar
Hagley, E.A.C., and Barber, D.R., 1992. Effect of food sources on the longevity and fecundity of Pholetesor ornigis (Weed) (Hymenoptera: Braconidae). The Canadian Entomologist 124: 341346.CrossRefGoogle Scholar
Hanson, P.M. 1982. Parasitoids in endemic spruce budworm (Choristoneura fumiferana [Clem.]) populations in Vermont. M.Sc. thesis, University of Vermont, Burlington, VT.Google Scholar
Hardy, I.C.W., Griffiths, N.T., and Godfray, H.C.J.. 1992. Clutch size in a parasitoid wasp: a manipulation experiment. Journal of Animal Ecology 61: 121129.Google Scholar
Harrison, J.O. 1965. Studies on the biology of Elachertus ceramidiae (Hymenoptera: Eulophidae), a parasite of the banana pest Ceramidia butleri (Lepidoptera: Syntomidae). Annals of the Entomological Society of America 58: 6466.Google Scholar
Hébert, C., Cloutier, C., Régnière, J., and Perry, D.F.. 1989. Seasonal biology of Winthemia fumiferanae Toth. (Diptera: Tachinidae), a larval–pupal parasitoid of the spruce budworm (Lepidoptera: Tortricidae). Canadian Journal of Zoology 67: 23842391.Google Scholar
Heinz, K.M., and Parrella, M.P.. 1990. Holarctic distribution of the leafminer parasitoid Diglyphus begini (Hymenoptera: Eulophidae) and notes on its life history attacking Liriomyza trifolii (Diptera: Agromyzidae) in chrysanthemum. Annals of the Entomological Society of America 83: 916924.Google Scholar
Herren, H.R. 1977. Le rôle des eulophides dans la gradation de la tordeuse grise du mélèze, Zeiraphera diniana Guenée (Lep.: Tortricidae) en Haute-Engadine. Ph.D. thesis, L'Ecole Polytechnique Fédérale Zurich, Zurich, Switzerland.Google Scholar
Huber, J.T., Eveleigh, E., Pollock, S., and McCarthy, P.. 1996. The chalcidoid parasitoids and hyperparasitoids (Hymenoptera: Chalcidoidea) of Choristoneura species (Lepidoptera: Tortricidae) in America north of Mexico. The Canadian Entomologist 128: 11671220.Google Scholar
Idoine, K., and Ferro, D.N.. 1988. Aphid honeydew as a carbohydrate source for Edovum puttleri (Hymenoptera: Eulophidae). Environmental Entomology 17: 941944.Google Scholar
King, B.H. 1987. Offspring sex ratios in parasitoid wasps. Quarterly Review of Biology 62: 367396.CrossRefGoogle Scholar
King, B.H. 1993. Sex ratio manipulation by parasitoid wasps. pp. 418441in Wrensch, D.L., and Ebbert, M.A. (Eds.), Evolution and Diversity of Sex Ratio in Insects and Mites. Chapman and Hall, Inc., New York.Google Scholar
Lindquist, O.H. 1973. Notes on the biology of the larch needleworm, Zeiraphera improbana (Lepidoptera: Olethreutidae), in Ontario. The Canadian Entomologist 105: 11291131.Google Scholar
Lysyk, T.J. 1989. Stochastic model of eastern spruce budworm (Lepidoptera: Tortricidae) phenology on white spruce and balsam fir. Journal of Economic Entomology 82: 11611168.Google Scholar
Maltais, J., Régnière, J., Cloutier, C., Hébert, C., and Perry, D.F.. 1989. Seasonal biology of Meteorus trachynotus Vier. (Hymenoptera: Braconidae) and of its overwintering host Choristoneura rosaceana (Harr.) (Lepidoptera: Tortricidae). The Canadian Entomologist 121: 745756.CrossRefGoogle Scholar
May, R.M., and Hassell, M.P.. 1988. Population dynamics and biological control. Philosophical Transactions of the Royal Society of London, Series B 318: 129169.Google Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist 97: 5862.Google Scholar
Miller, C.A., and Renault, T.R.. 1976. Incidence of parasitoids attacking endemic spruce budworm (Lepidoptera: Tortricidae) populations in New Brunswick. The Canadian Entomologist 108: 10451052.CrossRefGoogle Scholar
Miller, C.A., and Renault, T.R.. 1981. The use of experimental populations to assess budworm larval mortality at low densities. Canadian Forest Service Information Report M–X–115.Google Scholar
Mills, N.J. 1992. Parasitoid guilds, life styles, and host ranges in the parasitoid complexes of tortricoid hosts (Lepidoptera: Tortricidae). Environmental Entomology 21: 230239.CrossRefGoogle Scholar
Nealis, V.G. 1991. Parasitism in sustained and collapsing populations of the jack pine budworm, Choristoneura pinus pinus Free. (Lepidoptera: Tortricidae), in Ontario, 1985–1987. The Canadian Entomologist 123: 10651075.Google Scholar
Nelson, J.M., and Roitberg, B.D.. 1995. Flexible patch time allocation by the leafminer parasitoid, Opius dimidiatus. Ecological Entomology 20: 245252.Google Scholar
Patel, K.J., and Schuster, D.J.. 1991. Temperature-dependent fecundity, longevity, and host-killing activity of Diglyphus intermedius (Hymenoptera: Eulophidae) on third instars of Liriomyza trifolii (Burgess) (Diptera: Agromyzidae). Environmental Entomology 20: 11951199.CrossRefGoogle Scholar
Pitcairn, M.J., and Gutierrez, A.P.. 1992. Influence of adult size and age on the fecundity and longevity of Tetrastichus incertus (Hymenoptera: Eulophidae). Annals of the Entomological Society of America 85: 5357.Google Scholar
Ridgway, N.M., and Mahr, D.L.. 1990. Reproduction, development, longevity, and host mortality of Sympiesis marylandensis (Hymenoptera: Eulophidae), a parasitoid of spotted tentiform leafminer (Lepidoptera: Gracillariidae), in the laboratory. Annals of the Entomological Society of America 83: 795799.Google Scholar
Royama, T. 1992. Analytical Population Dynamics. Chapman and Hall, Inc., London, England.Google Scholar
SAS Institute Inc. 1988. SAS/STAT user's guide. 6.03 edition. SAS Institute Inc., Cary, N.C.Google Scholar
Schauff, M.E. 1985. Taxonomic study of the nearctic species of Elachertus Spinola (Hymenoptera: Eulophidae). Proceedings of the Entomological Society of Washington 87: 843858.Google Scholar
Sears, M.K., and Boiteau, G.. 1989. Parasitism of Colorado potato beetle (Coleoptera: Chrysomelidae) eggs by Edovum puttleri (Hymenoptera: Eulophidae) on potato in eastern Canada. Journal of Economic Entomology 82: 803810.Google Scholar
Thireau, J.-C., and Régnière, J.. 1995. Development, reproduction, voltinism and host synchrony of Meteorus trachynotus with its hosts Choristoneura fumiferana and C. rosaceana. Entomologia Experimentalis et Applicata 76: 6782.Google Scholar
Torgersen, T.R. 1969. Two eulophid parasites associated with the black headed budworm in Alaska. The Canadian Entomologist 101: 180.Google Scholar
van Alphen, J.J.M., and Jervis, M.A.. 1996. Foraging behaviour. pp. 162in Jervis, M., and Kidd, N. (Eds.), Insect Natural Enemies: Practical Approaches to Their Study and Evaluation. Chapman and Hall, Inc., London, England.Google Scholar
van Alphen, J.J.M., and Visser, M.E.. 1990. Superparasitism as an adaptive strategy for insect parasitoids. Annual Review of Entomology 35: 5979.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. 2nd ed. Prentice-Hall, Inc., Englewood Cliffs, N.J.Google Scholar