Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T23:45:54.870Z Has data issue: false hasContentIssue false

LIFE HISTORY AND BIOLOGY OF IPS LATIDENS (LECONTE) (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

D.R. Miller
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaV5A 1S6
J.H. Borden
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaV5A 1S6

Abstract

The life history and biology of Ips latidens (LeConte) were investigated using bark-sandwich and whole-log rearing methods. In contrast with other Ips spp., some females initiated galleries under conditions of female-biased sex ratios, and sometimes 2 or more males were present in a gallery. In general, however, I. latidens exhibited typical ipine characteristics. A single male usually admitted 1–3 females into a gallery. Females oviposited at a rate of 2.25 eggs/day and achieved a mean fecundity of 64.4 eggs. The larval stage comprised 80% of the generation time (egg to teneral adult) and analysis of head-capsule widths disclosed 3 larval instars. The mean survivorship within broods was 56.0% after 70 days; the reproductive success of monogamous pairs of beetles was 36.1 teneral adults. Single females constructed 3–4 egg tunnels/gallery system; hence, harem size cannot always be inferred from the number of egg tunnels in each gallery. The mean generation time in the laboratory was 2.07 × greater than for I. pini. By comparing laboratory data on I. latidens with laboratory and field data on I. pini, the generation time of I. latidens is estimated at 64–124 days in the field. In south-central British Columbia, I. latidens probably has 1 generation, and possibly 2 broods, per year.

Résumé

Le cycle vital de la biologie de Ips latidens (LeConte) ont été étudiés par élevage sur écorce en sandwich et sur bûche entière. Contrairement à ce qui se passe chez d'autres Ips spp., certaines femelles ont initié des galeries lorsqu'un sexe ratio biaisé en faveur des femelles prévalait, et on a observé la présence occasionnelle de 2 ou plusieurs mâles dans une galerie. Cependant, I. latidens présentait généralement les caractéristiques typiques des ipines. Un mâle admettait normalement de 1 à 3 femelles dans une galerie. Les femelles ont pondu à raison de 2,25 oeufs/jour, réalisant une fécondité moyenne de 64,4 oeufs. Le développement larvaire comptait pour 80% du temps de génération (de l'oeuf à l'adulte nouveau) et l'analyse de la largeur de la capsule céphalique a révélé 3 stades larvaires. La survie moyenne des couvées était de 56,0% après 70 jours. Le succès de reproduction des couples monogames a été de 36,1 adultes nouveaux. Les femelles isolées ont construit 3 ou 4 tunnels par système de galeries. La durée moyenne d'une génération au laboratoire était de 2,07 fois plus longue que pour I. pini. Une comparaison des données de laboratoire portant sur I. latidens avec des données de laboratoire et de terrain sur I. pini permet d'estimer la durée d'une génération de I. latidens à 64–124 jours sur le terrain. Il est probable qu'au centre-sud de la Colombie-Britannique, I. latidens a 1 génération par année et produit 2 couvées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

All, J.N., and Anderson, R.F.. 1972. Initial attack and brood production by females of Ips grandicollis (Coleoptera: Scolytidae). Ann. ent. Soc. Am. 65: 12931296.Google Scholar
Annila, E. 1969. Influence of temperature on the development and voltinism of Ips typographus L. (Col., Scolytidae). Ann. ent. Fenn. 6: 161208.Google Scholar
Annila, E. 1971. Sex-ratio in Ips typographus L. (Col., Scolytidae). Ann. ent. Fenn. 37: 714.Google Scholar
Atkins, M.D. 1966 a. Laboratory studies on the behaviour of the douglas-fir beetle, Dendroctonus pseudotsugae Hopkins. Can. Ent. 98: 953991.Google Scholar
Atkins, M.D. 1966 b. Behavioural variation among scolytids in relation to their habitat. Can. Ent. 98: 285288.Google Scholar
Balogun, R.A. 1969. A perspex-bark sandwich technique for rearing bark beetles. Bull. ent. Soc. Nigeria 2: 8586.Google Scholar
Balogun, R.A. 1970. The life-history and habits of the larch bark beetle, Ips cembrae (Coleoptera: Scolytidae) in the north east of Scotland. Can. Ent. 102: 226239.Google Scholar
Barr, B.A. 1969. Sound production in Scolytidae (Coleoptera) with emphasis on the genus Ips. Can. Ent. 101: 636672.CrossRefGoogle Scholar
Beanlands, G.E. 1966. A laboratory-rearing method for observing adult bark beetles and their developing broods. Can. Ent. 98: 412414.CrossRefGoogle Scholar
Berryman, A.A. 1968. Distribution of Scolytus ventralis attacks, emergence, and parasites in grand fir. Can. Ent. 100: 5768.CrossRefGoogle Scholar
Berryman, A.A. 1974. Dynamics of bark beetle populations: towards a general productivity model. Environ. Ent. 3: 579585.CrossRefGoogle Scholar
Berryman, A.A. 1982. Population dynamics of bark beetles. pp. 264–314 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark beetles in North American conifers. A system for the study of evolutionary biology. Univ. Texas Press, Austin. 527 pp.Google Scholar
Berryman, A.A., and Pienaar, L.V.. 1973. Simulation of intraspecific competition and survival of Scolytus ventralis broods (Coleoptera: Scolytidae). Environ. Ent. 2: 447459.CrossRefGoogle Scholar
Birch, M.C. 1978. Chemical communication in pine bark beetles. Am. Sci. 66: 409419.Google Scholar
Blackman, M.W. 1919. Notes on forest insects. I. On two bark beetles attacking the trunks of white pine trees. Psyche 26: 8597.CrossRefGoogle Scholar
Borden, J.H. 1967. Factors influencing the response of Ips confusus (Coleoptera: Scolytidae) to male attractant. Can. Ent. 99: 11641193.CrossRefGoogle Scholar
Borden, J.H. 1969. Observations on the life history and habits of Alniphagus aspericollis (Coleoptera: Scolytidae) in southwestern British Columbia. Can. Ent. 101: 870878.CrossRefGoogle Scholar
Borden, J.H., and Slater, C.E.. 1968. Induction of flight muscle degeneration by synthetic juvenile hormone in Ips confusus (Coleoptera: Scolytidae). Z. Vergl. Physiol. 61: 366368.Google Scholar
Bright, D.E. Jr., 1976. The bark beetles of Canada and Alaska. Insects and Arachnids of Canada. Part 2. Agriculture Canada Publication 1576. 241 pp.Google Scholar
Bright, D.E. Jr.,, and Stark, R.W.. 1973. The bark and ambrosia beetles of California. Coleoptera: Scolytidae and Platypodidae. Bull. California Insect Surv. 16: 1169.Google Scholar
Byers, J.A. 1984. Nearest neighbor analysis and simulation of distribution patterns indicates an attack spacing mechanism in the bark beetle, Ips typographus (Coleoptera: Scolytidae). Environ. Ent. 13: 11931200.CrossRefGoogle Scholar
Cameron, E.A., and Borden, J.H.. 1967. Emergence patterns of Ips confusus (Coleoptera: Scolytidae) from ponderosa pine. Can. Ent. 99: 236244.Google Scholar
Chamberlin, W.J. 1958. The Scolytoidea of the Northwest. Oregon State College Press, Corvallis. 208 pp.Google Scholar
Cole, W.E. 1973. Crowding effects among single-age larvae of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ. Ent. 2: 285293.CrossRefGoogle Scholar
Cole, W.E. 1975. Some mortality factor interactions within mountain pine beetle broods. Environ. Ent. 4: 97102.Google Scholar
Cook, S.P., Wagner, T.L., Flamm, R.O., Dickens, J.C., and Coulson, R.N.. 1983. Examination of sex ratios and mating habits of Ips avulsus and I. calligraphus (Coleoptera: Scolytidae). Ann. ent. Soc. Am. 76: 5660.CrossRefGoogle Scholar
Dyar, H.G. 1890. The number of molts of lepidopterous larvae. Psyche 5: 420422.CrossRefGoogle Scholar
Emlen, S.T. 1976. Lek organization and mating strategies in the bullfrog. Behav. Ecol. Sociobiol. 1: 283313.CrossRefGoogle Scholar
Emlen, S.T., and Oring, L.W.. 1977. Ecology, sexual selection and the evolution of mating systems. Science 197: 215223.CrossRefGoogle ScholarPubMed
Furniss, R.L., and Carolin, V.M.. 1977. Western forest insects. USDA For. Serv. Misc. Publ. 1339. 654 pp.Google Scholar
Gaines, J.C., and Campbell, F.L.. 1935. Dyar's rule as related to the number of instars of the cone ear worm, Heliothis obsoleta (Fab.), collected in the field. Ann. ent. Soc. Am. 28: 445461.Google Scholar
Gouger, R.J., Yearian, W.C., and Wilkinson, R.C.. 1975. Feeding and reproductive behavior of Ips avulsus. Florida Ent. 58: 221229.CrossRefGoogle Scholar
Hedden, R.L., and Gara, R.I.. 1976. Spatial attack pattern of a western Washington douglas-fir beetle population. For. Sci. 22: 100102.Google Scholar
Hopping, G.R. 1961. Techniques for rearing Ips DeGeer (Coleoptera: Scolytidae). Can. Ent. 93: 10501053.Google Scholar
Hopping, G.R. 1963. Generic characters in the tribe Ipini (Coleoptera: Scolytidae), with a new species, a new combination, and a new synonymy. Can. Ent. 95: 6168.CrossRefGoogle Scholar
Hosking, G.P. 1972. Xyleborus saxeseni, its life-history and flight behaviour in New Zealand. N.Z. J. For. Sci. 3: 3753.Google Scholar
Kirkendall, L.R. 1983. The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zool. J. Linn. Soc. 77: 293352.Google Scholar
Lanier, G.N. 1966. Interspecific mating and cytological studies of closely related species of Ips DeGeer and Orthotomicus Fernari (Coleoptera: Scolytidae). Can. Ent. 98: 175188.Google Scholar
Lanier, G.N., and Cameron, E.A.. 1969. Secondary sexual characters in the North American species of the genus Ips (Coleoptera: Scolytidae). Can. Ent. 101: 862870.CrossRefGoogle Scholar
Lanier, G.N., and Oliver, J.H. Jr., 1966. “Sex-ratio” condition: Unusual mechanisms in bark beetles. Science 153: 208209.CrossRefGoogle ScholarPubMed
Light, D.M., Birch, M.C., and Payne, T.D.. 1983. Laboratory study of intraspecific and interspecific competition within and between two sympatric bark beetle species, Ips pini and I. paraconfusus. Z. Ang. Ent. 96: 233241.CrossRefGoogle Scholar
Mel'nikova, N.I. 1964. The biological significance of air holes in passages of the bark beetle, Scolytus ratzeburgi Jans. (Coleoptera, Ipidae). Ent. Rev. 43: 1623.Google Scholar
Nillsen, A.C. 1978. Spatial attack pattern of the bark beetle Tomicus piniperda L. (Col., Scolytidae). Norway J. Ent. 25: 171175.Google Scholar
Ogibin, B.N. 1973. Sex ratio and size of beetles of young generation with respect to different population density of Ips typographus (Coleoptera, Ipidae). Zool. Zh. 52: 14171419.Google Scholar
Ogibin, B.N. 1974. Regulation of the population density in Ips typographus (Coleoptera, Ipidae) at preimaginal stages of development. Zool. Zh. 53: 4050.Google Scholar
Prebble, M.L. 1933. The larval development of three bark beetles. Can. Ent. 65: 145150.Google Scholar
Reid, R.W. 1955. The bark beetle complex associated with lodgepole pine slash in Alberta. Can. Ent. 87: 311323.CrossRefGoogle Scholar
Rudinsky, J.A., Oester, P.T., and Ryker, L.C.. 1978. Gallery initiation and male stridulation of the polygamous spruce bark beetle, Polygraphus rufipennis. Ann. ent. Soc. Am. 71: 317321.Google Scholar
Schenk, J.A., and Benjamin, D.M.. 1969. Notes on the biology of Ips pini in central Wisconsin jackpine forests, Pinus banksiana. Ann. ent. Soc. Am. 62: 480485.CrossRefGoogle Scholar
Schmitz, R.F. 1972. Behavior of Ips pini during mating, oviposition, and larval development (Coleoptera: Scolytidae). Can. Ent. 104: 17231728.CrossRefGoogle Scholar
Shepherd, R.F. 1965. Distribution of attacks by Dendroctonus ponderosae Hopk. on Pinus contorta Dougl. var. latifolia Engelm. Can. Ent. 97: 207215.Google Scholar
Stark, R.W. 1982. Generalised ecology and life cycles of bark beetles. pp. 21–45 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark beetles in North American conifers. A system for the study of evolutionary biology. Univ. Texas Press, Austin. 527 pp.Google Scholar
Struble, G.R., and Hall, R.C.. 1955. The California five-spined engraver. USDA For. Serv. Circ. 964.Google Scholar
Taylor, R.L. 1931. On “Dyar's rule” and its application to sawfly larvae. Ann. ent. Soc. Am. 24: 451466.CrossRefGoogle Scholar
Thomas, J.B. 1961. The life history of Ips pini (Say) (Coleoptera: Scolytidae). Can. Ent. 93: 384390.CrossRefGoogle Scholar
Watterson, G.P., Payne, T.L., and Richerson, J.V.. 1982. The effects of verbenone and brevicomin on the within-tree populations of Dendroctonus frontalis. J. Georgia ent. Soc. 17: 118126.Google Scholar
Witanachchi, J.P. 1980. Evidence for pre-emergence mating among mature progeny of Ips grandicollis. J. Australian Ent. Soc. 19: 93100.CrossRefGoogle Scholar
Wood, D.L., and Stark, R.W.. 1968. The life history of Ips calligraphus (Coleoptera: Scolytidae) with notes on its biology in California. Can. Ent. 100: 145151.Google Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae): A taxonomic monograph. Great Basin Nat. Mem. 6: 11359.Google Scholar
Zanuncio, J.C. 1981. Biology of Gnathotrichus sulcatus (LeConte 1868) (Col: Scolytidae) with special emphasis on host colonization and brood production. Ph.D. thesis, Univ. British Columbia, Faculty of Forestry, Vancouver, BC.Google Scholar
Zumr, V., and Soldan, T.. 1981. Reproductive cycles of Ips typographus, I. amitinus and Pityogenes chalcographus (Coleoptera: Scolytidae). Acta Ent. Bohemoslov. 78: 280289.Google Scholar