Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T14:48:53.764Z Has data issue: false hasContentIssue false

INSECT BEHAVIOURAL RESPONSES TO TOXINS: PRACTICAL AND EVOLUTIONARY CONSIDERATIONS

Published online by Cambridge University Press:  31 May 2012

Fred G. Pluthero
Affiliation:
Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1
Rama S. Singh
Affiliation:
Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1

Abstract

The behavioural responses of insects to insecticides and the relationships of these responses to physiological resistance are reviewed and discussed in terms of their potential economic importance and their genetic and evolutionary bases. In addition, responses to insecticide are compared with responses of phytophagous insects to host-produced toxins, with the discussion centring upon the genetic and evolutionary bases of these similar types of response and their possible roles in adaptation and speciation.

Résumé

Les réponses comportementales des insectes aux insecticides et les relations de ces réponses avec la résistance physiologique sont passées en revue et examinées en rapport avec leur importance économique potentielle ainsi que leurs bases génétiques et évolutives. De plus, les réponses aux insecticides sont comparées à celles des insectes phytophages vis-à-vis des toxines produites par leurs plantes-hôtes, la discussion se rapportant aux bases génétiques et évolutives de ces catégories semblables de réponses, ainsi qu'à leurs rôles dans l'adaptation et la spéciation.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, G. W. and Schmidt, J. B.. 1949. Further studies on resistance to DDT in the house fly. J. econ. Ent. 42: 287292.CrossRefGoogle Scholar
Brown, A. W. A. 1958. Insecticide resistance in arthropods. Monogr. Wld Hlth Org. 38.Google Scholar
Brown, A. W. A. 1964. Experimental observations governing the choice of a test method for determining the DDT-irritability of adult mosquitoes. Bull. Wld Hlth Org. 30: 97111.Google Scholar
Brown, A. W. A. 1977. The progression of resistance mechanisms developed against insecticides. In Plimmer, J. R. (Ed.), ACS Symposium 37. Washington, D.C.Google Scholar
Brown, A. W. A. and Pal, R.. 1971. Insecticide resistance in arthropods, 2nd ed. Monogr. Wld Hlth Org.Google Scholar
Bruce, W. N. and Decker, G. L.. 1950. House fly tolerance for insecticides. Soap Sanit. Chem. 26: 122–125, 145147.Google Scholar
Burden, G. S. 1975. Repellency of selected insecticides. Pest Control 43: 1618.Google Scholar
Bush, G. L. 1975. Models of animal speciation. A. Rev. ecol. Syst. 6: 339364.CrossRefGoogle Scholar
Bush, G. L. 1974. The mechanism of sympatric host range formation in the true fruit flies (Tephritidae). In White, M. J. D. (Ed.), Genetic mechanisms of speciation in insects. Australia and New Zealand Book Co., Sydney, Australia.Google Scholar
Bush, G. L. 1982. What do we really know about speciation? In Milkman, R. E. (Ed.), Perspectives on Evolution. Sinauer, Sunderland, Mass.Google Scholar
Busvine, J. R. 1951. Mechanisms of resistance to insecticides in house flies. Nature 168: 193.CrossRefGoogle Scholar
Busvine, J. R. 1964. The significance of DDT-irritability tests on mosquitoes. Bull Wld Hlth Org. 31: 645656.Google Scholar
Buxton, P. A. 1945. The use of DDT in relation to problems of tropical medicine. Trans. R. Soc. trop. Med. Hyg. 38: 267393.CrossRefGoogle ScholarPubMed
Choudhury, D. S. and Rahman, S. J.. 1967. Observations on the irritability of susceptible and resistant strains of Anopheles-stephensi type to DDT. Bull. Indian Soc. Commun. Dis. 4: 129134.Google Scholar
Coluzzi, A. and Coluzzi, M.. 1961 Riv. Malariol. 40: 35.Google Scholar
Crow, J. F. 1954. Analysis of a DDT-resistant strain of Drosophila. J. econ. Ent. 47: 393398.CrossRefGoogle Scholar
Dapkus, D. and Merrel, D. J.. 1977. Chromosomal analysis of DDT-resistance in a long-term selected population of Drosophila melanogaster. Genetics 87: 658697.CrossRefGoogle Scholar
Davidson, G. and Zahar, A. R.. 1973. The practical implications of resistance of malaria vectors to insecticides. Bull. Wld Hlth Org. 49: 475483.Google ScholarPubMed
deBustamante, F. M., Pinto, O. S., Guedes, A. S., Xavier, S. H., and Freitas, J. R.. 1951. Mosquito News 11: 186.Google Scholar
Decker, G. L. and Bruce, W. N.. 1951. Where are we going with fly resistance? Soap Sanit. Chem. 27: 139143.Google Scholar
Dethier, V. G. 1956. Repellents. A. Rev. Ent. 1: 181202.CrossRefGoogle Scholar
Dethier, V. G. 1980 a. Food-aversion learning in two polyphagous caterpillars, Diacrisia virginica and Estigmene congrua. Physiol. Ent. 5: 321325.CrossRefGoogle Scholar
Dethier, V. G. 1980 b. Evolution of receptor sensitivity to secondary plant substances with special reference to deterrents. Am. Nat. 115: 4566.CrossRefGoogle Scholar
Dethier, V. G. and Yost, M. T.. 1979. Oligophogy and absence of food-aversion learning in tobacco hornworm, Manduca sexta. Physiol. Ent. 4: 125130.CrossRefGoogle Scholar
DeZulueta, J. 1959. Insecticide resistance in Anopheles sacharovi. Bull. Wld Hlth Org. 20: 797822.Google Scholar
Drobozina, V. P., Alexeev, A. N., Bondareva, N. J., and Suvorova, N. J.. 1977. Irritability and behaviour of Anopheles sacharovi in tested dwellings of villages in the Azerbaijan SSR, USSR. Med. Parazitol. Parazit. Bolezni 46: 5157.Google Scholar
Ebeling, W., Wagner, R. E., and Reierson, D. D.. 1966. Influence of repellency on the efficiency of blatticides. I. Learned modification of behaviour of the German cockroach. J econ. Ent. 59: 13741388 (1967).CrossRefGoogle Scholar
Ebeling, W., Wagner, R. E., and Reierson, D. D.. 1968. Influence of repellency on the efficiency of blatticides. II. Laboratory experiments with German cockroaches. J. econ. Ent. 60: 13751390.CrossRefGoogle Scholar
Ebeling, W., Wagner, R. E., and Reierson, D. D.. 1969. Influence of repellency on the efficiency of blatticides. III. Field experiments with German cockroaches with notes on three other species. J. econ. Ent. 61: 751761.CrossRefGoogle Scholar
Ermishev, Y. U., Kulkova, T. A., and Polevoi, N. I.. 1977. Study of the sensitivity and irritability of Anopheles mosquitoes to insecticides in northern Afghanistan. Med. Parazitol. Parazit. Bolezni 46: 444447.Google Scholar
Falk, R. and Atidia, J.. 1975. Mutations affecting taste perception in D. melanogaster. Nature 254: 325328.CrossRefGoogle Scholar
Fay, R. W., Kilpatrick, J. W., and Morris, G. C.. 1958. Malathion resistance studies in the housefly. J. econ. Ent. 51: 452453.CrossRefGoogle Scholar
Futuyma, D. J. 1979. Evolutionary Biology. Sinauer, Sunderland, Mass.Google Scholar
Futuyma, D. J. and Meyer, G. C.. 1980. Non-allopatric speciation in animals. Syst. Zool. 29: 254271.CrossRefGoogle Scholar
Gaaboub, I. A. and Dawood, M. R.. 1974. Irritability status of adults of Culex pipiens under selected pressure with lethal concentrations of DDT and malathion. Z. angew. Ent. 77: 126132.CrossRefGoogle Scholar
Gahan, J. B., Travis, B. V., and Lindquist, A. N.. 1945. DDT as a residual type spray to control disease-carrying mosquitoes: laboratory tests. J. econ. Ent. 38: 236240.CrossRefGoogle Scholar
Georghiou, G. P. 1972. The evolution of resistance to pesticides. A. Rev. ecol. Syst. 3, 3: 133168.CrossRefGoogle Scholar
Gerold, J. L. 1970 a. World Health Organ. Inform. Circ. Resistance VBC/IRG/70.9, 34.Google Scholar
Gerold, J. L. 1970 b. World Health Organ. Inform. Circ. Resistance VBC/IRG/W706/70.11, 25.Google Scholar
Gerold, J. L. and Laarman, J. J.. 1964. Selection of strains of Anopheles atroparvus with different behavioural responses to contacts with DDT. Nature 204: 500501.CrossRefGoogle ScholarPubMed
Gerold, J. L. and Laarman, J. J.. 1967. Behavioural responses to contact with DDT in Anopheles atroparvus. Nature 215: 518520.CrossRefGoogle ScholarPubMed
Gilbert, L. E. and Raven, P. H. (Eds.). 1975. Coevolution of Animals and Plants. University of Texas Press, Austin.Google Scholar
Gould, F. 1979. Rapid host range evolution in a population of the phytophagous mite Tetranychus urticae. Evolution 33: 791802.CrossRefGoogle Scholar
Hadaway, A. B. 1950. Observations on mosquito behaviour in native huts. Bull. ent. Res. 41(1): 6378.CrossRefGoogle Scholar
Hatchett, J. H. and Gallun, R. L.. 1970. Genetics of the ability of the Hessian fly (Mayetiola destructor) to survive on wheats having different genes for resistance. Ann. ent. Soc. Am. 63: 14001407.CrossRefGoogle Scholar
Heed, W. B. 1971. Host plant specificity and speciation in Hawaiian Drosophila. Taxon 20: 115121.CrossRefGoogle Scholar
Hess, A. D. 1952. The significance of insecticide resistance in vector control programs. Am. J. trop. Med. Hyg. 1: 371388.CrossRefGoogle ScholarPubMed
Hill, E. F. 1972. Avoidance of lethal dietary concentrations of insecticide by house sparrows. J. Wildl. Mgmt 36: 635639.CrossRefGoogle Scholar
Hooper, G. A. S. and Brown, A. W. A.. 1965 a. A case of developed irritability to insecticides. Bull. Wld Hlth Org. 32: 131132.Google ScholarPubMed
Hooper, G. A. S. and Brown, A. W. A.. 1965 b. Development of increased irritability to insecticides due to decreased detoxication. Entomologia exp. appl. 8: 263270.CrossRefGoogle Scholar
Huettel, M. D. and Bush, G. L.. 1972. The genetics of host selection and its bearing on sympatric speciation in Procecidochares (Diptera: Tephritidae). Entomologia exp. appl. 15: 465480.CrossRefGoogle Scholar
Jaenicke, P. 1982. Environmental modification of oviposition behaviour in Drosophila. Am. Nat. 119: 784803.CrossRefGoogle Scholar
Jakob, W. Z. 1969. Simulated field tests with ovicides against Aedes aegypti eggs in tires and cans. Mosquito News 29: 402407.Google Scholar
Kaschef, A. H. 1970. Effects of temperature on the irritability caused by DDT and DDT-analogues in anopheline mosquitoes. Bull. Wld Hlth Org. 42: 917930.Google Scholar
Keiding, J. 1965. Observations on the behaviour of the house fly in relation to its control. Riv. Parasit. 26: 4560.Google Scholar
Kennedy, J. S. 1947. The excitant and repellent effects on mosquitoes of sub-lethal contacts with DDT. Bull. ent. Res. 37: 593607.CrossRefGoogle ScholarPubMed
Kikkawa, H. 1967. Mode of mutation of the parathion resistance gene in D. melanogaster. World Health Organization report given to the 11th Pacific Science Congress, Tokyo, 1966.Google Scholar
Kikkuchi, T. 1973. Genetic alterations of olfactory functions in D. melanogaster. Jap. J. Gen. 48: 106118.CrossRefGoogle Scholar
Kilpatrick, J. W. and Schoof, H. F.. 1958. A field strain of malathion-resistant house flies. J. econ. Ent. 51: 1819.CrossRefGoogle Scholar
King, J. C. and Somme, L.. 1958. Chromosomal analysis of the genetic factors for resistance to DDT in two resistant lines of Drosophila melanogaster. Genetics 43: 577593.CrossRefGoogle Scholar
King, W. V. and Gahan, J. B.. 1949. Failure of DDT to control house flies. J. econ. Ent. 42: 405.CrossRefGoogle ScholarPubMed
Knerer, G. and Atwood, C. E.. 1973. Diprionid saw flies: polymorphism and speciation. Science 179: 10901099.CrossRefGoogle Scholar
Kring, J. B. 1958. Feeding behaviour and DDT resistance of Epitrix cucumeris. J. econ. Ent. 51: 823828.CrossRefGoogle Scholar
Kynard, B. 1974. Avoidance behaviour of insecticides susceptible and resistant populations of mosquitofish to foam insecticides. Trans. Am. Fish. Soc. 1974: 557561.2.0.CO;2>CrossRefGoogle Scholar
Lande, R. 1981. The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99: 541553.CrossRefGoogle ScholarPubMed
Ludvik, G. F., Snow, W. E., and Hawkins, W. B.. 1951. The susceptibility of Anopheles quadrimaculatus to DDT after five years of routine treatment in the Tennessee River Valley. J. natn. Mal. Soc. 10: 3543.Google ScholarPubMed
Margham, P. 1975. Insecticide resistance, a problem in applied biology. Sci. Prog. Oxford 62: 333351.Google ScholarPubMed
Mattingly, P. F. 1962. Mosquito behaviour in relation to disease eradication programmes. A. Rev. Ent. 7: 419436.CrossRefGoogle ScholarPubMed
Maugh, T. H. 1982. Exploring plant resistance to insects. Science 216: 722723.CrossRefGoogle ScholarPubMed
Maynard Smith, J. 1966. Sympatric speciation. Am. Nat. 100: 637650.CrossRefGoogle Scholar
Mayr, E. 1963. Animal Species and Evolution. Harvard Univ. Press, Cambridge, Mass.CrossRefGoogle Scholar
Mayr, E. 1974. Behaviour programs and evolutionary strategies. Am. Scientist 62: 650659.Google ScholarPubMed
McClelland, G. A. H. 1967. Problems of interaction and density in mosquitoes in relation to Aedes aegypti eradication. Proc. Calif. Mosq. Contr. Assoc. 35: 9495.Google ScholarPubMed
Metcalf, R. L., Hess, A. D., Smith, C. E., Jeffery, G. M., and Ludwig, G. L.. 1945. Observations on the use of DDT for the control of Anopheles quadrimaculatus. Publ. Hlth Rep. 60: 753774.CrossRefGoogle Scholar
Moore, C. G. 1977. Insecticide avoidance by Aedes aegypti. Mosquito News 37: 291293.Google Scholar
Morrison, F. O. 1951. Morphological and habit changes correlated with resistance to insecticide treatment. 81st A. Rep. ent. Soc. Ont. 1950, pp. 4143.Google Scholar
Morton, R. A. and Singh, R. S.. 1982. The association between malathion resistance and acetylcholinesterase activity in D. melanogaster. Biochem. Gen. 20: 179198.CrossRefGoogle Scholar
Muirhead-Thomson, R. C. 1960. The significance of irritability, behaviouristic avoidance and allied phenomena in malaria eradication. Bull. Wld Hlth Org. 22: 721734.Google ScholarPubMed
Muirhead-Thomson, R. C. 1968. Ecology of Insect Vector Populations. Academic Press, N.Y.Google Scholar
Oshima, C. J. 1958. Studies on DDT-resistance in Drosophila melanogaster. J. Hered. 49: 2231.CrossRefGoogle Scholar
Pak, W. 1975. Mutations affecting vision in Drosophila. In King, R. C. (Ed.), Handbook of Genetics. Plenum, New York.Google Scholar
Perry, A. S. 1974. Insecticide resistance in insects and its ecological and economic thrust. In Khan, M. A. Q., (Ed.), Survival in toxic environments. Academic Press, N.Y.Google Scholar
Perry, A. S. and Agosin, M.. 1974. Physiology of insecticide resistance. In Rockstein, M. (Ed.), The Physiology of Insecta, 2nd ed. Vol. VI. Academic Press, N.Y.Google Scholar
Pesson, P. 1980. The botanical instinct of insects — an aspect of the conditions of plants and insects. Annls Soc. ent. Fr. 16: 435452.CrossRefGoogle Scholar
Plapp, F. W. 1976. Biochemical genetics of insecticide resistance. A. Rev. Ent. 21: 179197.CrossRefGoogle ScholarPubMed
Pluthero, F. G. 1982. The genetics of the behavioural and physiological responses of Drosophila melanogaster to the insecticide malathion. Ph.D. dissertation, McMaster University, Hamilton, Ontario, Canada.Google Scholar
Pluthero, F. G. and Threlkeld, S. F. H.. 1981. Genetic differences in malathion avoidance and resistance in Drosophila melanogaster. J. econ. Ent. 74: 736740.CrossRefGoogle ScholarPubMed
Pluthero, F. G., Singh, R. S., and Threlkeld, S. F. H.. 1982. The behavioural and physiological components of malathion resistance in D. melanogaster. Can. J. Gen. Cytol. 24: 807815.CrossRefGoogle Scholar
Prickett, D. J. and Radcliffe, C. A.. 1977. The behaviour of Tribolium castaneum and Sitophilus granarius in the presence of insecticide treated surfaces. J. Stored Prod. Res. 13: 145148.CrossRefGoogle Scholar
Prokopy, R. J., Averill, A. L., Cooley, S. S., and Roitberg, C. A.. 1982. Associative learning in egglaying site selection by apple maggot flies. Science 218: 7677.CrossRefGoogle ScholarPubMed
Quinn, W. G., Harris, W. D., and Benzer, S.. 1974. Conditioned behaviour in D. melanogaster. PNAS 71: 708712.CrossRefGoogle Scholar
Quraishi, M. S. 1977. Biochemical Insect Control. Wiley, N.Y.Google Scholar
Rausher, M. D. 1978. Search image for leaf shape in a butterfly. Science 200: 10711073.CrossRefGoogle Scholar
Rose, G. 1944. Fortschritte in der Bekämpfung das Laüce-Fleckfiebers und der Malaria. Acta trop. (Basle) 1(2). 27 pp.Google Scholar
Rust, M. R. and Reierson, D. A.. 1977 a. Using pheromone extract to reduce repellency of blatticides. J. econ. Ent. 70: 3438.CrossRefGoogle Scholar
Rust, M. R. and Reierson, D. A.. 1977 b. Increasing blatticidal efficiency with aggregation pheromone. J. econ. Ent. 70: 693696.CrossRefGoogle Scholar
Rust, M. R. and Reierson, D. A.. 1978. Comparison of the laboratory and field efficacy of insecticides used for German cockroach control. J. econ. Ent. 71: 704708.CrossRefGoogle Scholar
Schmidt, C. H. and LaBrecque, G. C.. 1959. Acceptability and toxicity of poisoned baits to house flies resistant to organophosphorous insecticides. J. econ. Ent. 52: 345346.CrossRefGoogle Scholar
Shepanski, M. C., Glover, T. J., and Kuhr, R. J.. 1977. Resistance of Drosophila melanogaster to DDT. J. econ. Ent. 70: 539543.CrossRefGoogle ScholarPubMed
Silverman, P. H. and Mer, M. D.. 1952. Behaviour of a DDT-resistant strain of flies. Riv. Parasit. 13: 123128.Google Scholar
Singh, R. S. and Morton, R. A.. 1981. Selection for Malathion-resistance in Drosophila melanogaster. Can. J. Genet. Cytol. 23: 355369.CrossRefGoogle ScholarPubMed
Smyth, T. and Roys, C. C.. 1955. Chemoreception in insects and the action of DDT. Biol. Bull. 108: 6676.CrossRefGoogle Scholar
Soliman, S. A. and Cutkomp, L. K.. 1963. A comparison of chemoreceptor and whole-fly responses to DDT and parathion. J. econ. Ent. 56: 492494.CrossRefGoogle Scholar
Sutherland, O. R. W., Russell, G. B., Biggs, D. R., and Lane, G. A.. 1980. Insect feeding deterrent activity of phytoalexin isoflavinoids. Biochem. Syst. Ecol. 8: 7375.CrossRefGoogle Scholar
Trapido, H. 1952. Modified response of Anopheles alibamanus to DDT residual house spraying in Panama. Am. J. trop. Med. Hyg. 1: 853861.CrossRefGoogle ScholarPubMed
Vilkova, N. D. 1976. Factors determining host plant selection behaviour of insects. Acta. Phytopath. Acad. Sci. Hung. 11: 99103.Google Scholar
Von Windeguth, D. L., Eliason, D. A., and Schoof, H. F.. 1971. The effects of carbaryl, propoxur, Abate and methoxychlor as larvicides against field infestations of Aedes aegypti. Mosquito News 31: 9195.Google Scholar
Ward, S. 1977. Invertebrate neurogenetics. A. Rev. Gen. 11: 415450.CrossRefGoogle ScholarPubMed
Wasserman, S. S. and Futuyma, D. J.. 1981. Evolution of host plant utilization in laboratory populations of the southern cowpea weevil, Callosobruchus maculatus. Evolution 35: 605617.CrossRefGoogle ScholarPubMed
World Health Organization. 1960. Expert Committee on insecticides. Tech. Rep. Wld Hlth Org., Sect. 191.Google Scholar
World Health Organization. 1970. Tech. Rep. 443, pp. 35–36, 158163.Google Scholar
Young, J. R. and McMillian, W. W.. 1979. Differential feeding by two strains of fall armyworm larvae on carbaryl treated surfaces. J. econ. Ent. 72: 202203.CrossRefGoogle Scholar
Zimmerman, E. C. 1960. Possible evidence of rapid speciation in Hawaiian moths. Evolution 14: 137138.CrossRefGoogle Scholar