Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-19T03:54:24.624Z Has data issue: false hasContentIssue false

THE INFLUENCE OF TEMPERATURE ON THE EFFICACY OF THREE PYRETHROID INSECTICIDES AGAINST THE GRASSHOPPER, MELANOPLUS SANGUINIPES (FAB.) (ORTHOPTERA: ACRIDIDAE), UNDER LABORATORY CONDITIONS1

Published online by Cambridge University Press:  31 May 2012

C.F. Hinks
Affiliation:
Research Station, Agriculture Canada, 107 Science Crescent, Saskatoon, Saskatchewan, CanadaS7N 0X2

Abstract

Three pyrethroids, deltamethrin, fenvalerate, and cyfluthrin, were assayed against 2nd-instar nymphs of the grasshopper Melanoplus sanguinipes (Fab.) at 5 dosages and at 5 post-treatment temperatures ranging from 15.6 to 37.8°C. All three showed a negative temperature coefficient of toxicity but there was considerable variation in the pattern of response. Deltamethrin proved to be the most effective and cyfluthrin the least effective, both in terms of the amount of active ingredient required for 90% mortality and in having the lowest negative coefficient, respectively. The extent of the negative temperature coefficient of toxicity was much more pronounced at the LD90 than the LD50. Apparent mortality was recorded at 24, 48, and 72 h post-treatment and with each of the pyrethroids, recovery of some hoppers took place after 24 h. This phenomenon of delayed recovery was greatest at the lower temperatures.

Résumé

On a testé trois pyréthroïdes (deltaméthrine, fenvalérate et cyfluthrine) sur des nymphes de 2e stade larvaire de la sauterelle Melanoplus sanguinipes (Fab.). On a utilisé 5 doses et 5 températures après traitement variant de 15,6 à 37,8 °C. La toxicité des 3 produits a présenté un coefficient de température négatif, mais on a constaté une grande variation dans la réponse. La deltaméthrine s'est révélée le produit le plus efficace tant du point de vue de la quantité d'ingrédient actif nécessaire pour obtenir une mortalité de 90% que du point de vue du coefficient négatif (le plus faible). La cyfluthrine s'est révélée le produit le moins efficace pour ces deux mêmes critières. L'importante du coefficient de température négatif touchant la toxicité était beaucoup plus prononcée dans le cas de la DL90 que dans celui de la DL50. La mortalité apparente a été enregistrée 24, 48 et 72 h après le traitement. Dans le cas des 3 pyréthroïdes, on a noté le rétablissement de certaines sauterelles après 24 h. Ce phénomène de rétablissement était plus important aux températures les plus faibles.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1983. Grasshopper control. Saskatchewan Agriculture Bulletin.Google Scholar
Blum, M.S., and Kearns, C.W.. 1956. Temperature and the action of pyrethrum in the American cockroach. J. econ. Ent. 49: 862865.CrossRefGoogle Scholar
Briggs, G.G., Elliott, M., and Janes, N.F.. 1983. Present status and future prospects for synthetic pyrethroids. In Miyamoto, J., and Kearney, P.C. (Eds.), Pesticide chemistry: human welfare and the environment, Vol. II. Pergamon Press.Google Scholar
Chalfant, R.B. 1973. Cabbage looper: effect of temperature on toxicity of insecticides in the laboratory. J. econ. Ent. 66: 339341.CrossRefGoogle Scholar
Ewen, A.B., Mukerji, M.K., and Hinks, C.F.. 1984. Effect of temperature on the toxicity of cypermethrin to nymphs of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Can. Ent. 116: 11531156.CrossRefGoogle Scholar
Harris, C.R., and Kinoshita, G.B.. 1977. Influence of post-treatment temperature on the toxicity of pyrethroid insecticides. J. econ. Ent. 70: 215218.CrossRefGoogle Scholar
Hartzell, A., and Wilcoxon, F.. 1932. Some factors affecting the efficiency of contact insecticides. II. Chemical and toxicological studies of pyrethrum. Contr. Boyce Thompson Inst. 4: 107117.Google Scholar
Hirano, M. 1979. Influence of post-treatment temperature on the toxicity of fenvalerate. Appl. Ent. Zool. 14: 404409.CrossRefGoogle Scholar
Holmstead, R.L., Casida, J.E., and Ruzo, L.O.. 1977. Photochemical reactions of pyrethroid insecticides. In Elliott, M. (Ed.), Synthetic pyrethroids. Am. Chem. Soc. Symp. Ser. 42: 137146. Washington, DC.Google Scholar
McKinlay, K.S., and Martin, W.K.. 1967. Effects of temperature and piperonyl butoxide on the toxicity of six carbamates to the grasshopper, Melanoplus sanguinipes ( = M. bilituratus). Can. Ent. 99: 748751.CrossRefGoogle Scholar
Mukerji, M.K., Pickford, R., and Randell, R.L.. 1976. A quantitative evaluation of grasshopper (Orthoptera: Acrididae) damage and its effect on spring wheat. Can. Ent. 108: 255270.CrossRefGoogle Scholar
Norment, B.R., and Chambers, H.W.. 1970. Temperature relationships in organo-phosphorus poisoning in boll weevils. J. econ. Ent. 63: 502504.CrossRefGoogle Scholar
Pickford, R., and Randell, R.L.. 1969. A non-diapause strain of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Can. Ent. 101: 894896.CrossRefGoogle Scholar
Riskallah, M.R. 1984. Influence of post-treatment temperature on the toxicity of pyrethroid insecticides to susceptible and resistant larvae of the Egyptian cotton leaf worm, Spodoptera littoralis (Boisd.). Experientia 40: 188190.CrossRefGoogle Scholar
Sparks, T.C., Pavloff, A.M., Rose, R.L., and Clower, D.F.. 1983. Temperature-toxicity relationships of pyrethroids on Heliothis virescens (F.) (Lepidoptera: Noctuidae) and Anthomonus grandis Boheman (Coleoptera: Curculionidae). J. econ. Ent. 76: 234246.CrossRefGoogle Scholar
Sparks, T.C., Shour, M.H., and Wellemeyer, E.G.. 1982. Temperature-toxicity relationships of pyrethroids on three lepidopterans. J. econ. Ent. 75: 643646.CrossRefGoogle Scholar
Thompson, J.L., McKinlay, K.S., and McDonald, H.. 1969. A laboratory sprayer. Can. Agric. Eng. 11: 2022.Google Scholar
Vinson, E.B., and Kearns, C.W.. 1952. Temperature and the action of DDT on the American roach. J. econ. Ent. 45: 484496.CrossRefGoogle Scholar