Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T14:21:45.989Z Has data issue: false hasContentIssue false

INFLUENCE OF SUGAR MAPLE HEALTH ON FECUNDITY OF PEAR THRIPS IN MASSACHUSETTS

Published online by Cambridge University Press:  31 May 2012

E. Carey
Affiliation:
Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA01003
R.G. Van Driesche
Affiliation:
Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA01003
J.S. Elkinton
Affiliation:
Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA01003
T.S. Bellows Jr.
Affiliation:
Department of Entomology, University of California, Riverside, California, USA92521
C. Burnham
Affiliation:
Massachusetts Department of Environmental Management, Amherst, Massachusetts, USA01002

Abstract

Widespread defoliation of sugar maple stands due to pear thrips, Taeniothrips inconsequens (Uzel), feeding occurred in Massachusetts in 1987 and 1988. To assess the role of tree health as a possible cause of these outbreaks, an experiment was conducted in sugar maple stands in Massachusetts in 1990. Sleeve cages were placed on mature sugar maples and stocked with adult female pear thrips to determine the relation between root starch reserves (an index of tree health) and thrips fecundity. The experiment was run at four sites, assessing both root starch levels and thrips fecundity on individual trees. Each stand showed a range from high to low starch values and trees at each end of the root starch index spectrum were selected for use in the experiment at each site. Analysis of data showed no differences between sites, apart from those linked to starch levels, and found thrips fecundity to be positively correlated with higher starch reserves. The results of this experiment do not support the original hypothesis that declining tree health was a causal factor in pear thrips outbreaks on sugar maple in Massachusetts.

Résumé

Une importante défoliation des forêts d’érables rouges due au Thrips du poirier, Taeniothrips inconsequens (Uzel), s’est produite au Massachusetts en 1987 et 1988. Une expérience a été mise au point dans des forêts d’érables rouges du Massachusetts en 1990 dans le but d’établir s’il existe un lien de causalité entre la santé des arbres et ces attaques. Afin d’évaluer la relation entre les réserves d’amidon des racines (un indice de la santé des érables) et la fécundité des thrips, nous avons placé des cages en forme de manchons sur des arbres à maturité et les avons garnies de femelles adultes de thrips. L’expérience a été menée en quatre endroits et les concentrations d’amidon dans les racines de même que la fécondité des thrips ont été estimées sur certains arbres en particulier : dans chaque forêt, les concentrations d’amidon des racines s’échelonnaient entre des valeurs hautes et des valeurs basse et des arbres ont été choisis à chaque extrémité du spectre des concentrations pour les expériences. L’analyse des données n’a pas mis en lumière de différences entre les forêts, sauf celles associées aux concentrations d’amidon, et la fécondité des thrips s’est avérée en corrélation positive avec les concentrations d’amidon les plus élevées. Les résultats des expériences ne corroborent donc pas l’hypothèse de départ, à savoir que la santé défaillante des arbres pourrait constituer un facteur déclencheur des attaques de Thrips du poirier sur les érables rouges au Massachusetts.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1987. Pear Thrips, Taeniothrips inconsequens (Uzel) (Thysanoptera: Thripidae). Tree Pest Leaflet, Entomology No. 36. Pennsylvania Department of Environmental Resources, Bureau of Forestry, Middletown, PA.Google Scholar
Bailey, S.F. 1944. The pear thrips in California. Bulletin of the California Agricultural Experiment Station 687: 55 pp.Google Scholar
Czencz, K., and Gerber, K.. 1986. Die Wirkung der Mineraldungung auf die Abundanz von Gramineenthripsen. Acta Phytopathologica et Entomologica Hungarica 21: 341346.Google Scholar
Dowell, R.V., and Steinberg, B.. 1990. Influence of host plant characteristics and nitrogen fertilization on development and survival of immature citrus blackfly, Aleurocanthus woglumi Ashby (Hom., Aleyrodidae). Journal of Applied Entomology 109: 113119.CrossRefGoogle Scholar
Fennah, R.G. 1955. The epidemiology of cacao-thrips on cacao in Trinidad. pp. 726in Report on Cacao Research in Trinidad 1954.Google Scholar
Fennah, R.G. 1965. The influence of environmental stress on the cacao tree in predetermining the feeding sites of cacao thrips, Selenothrips rubrocinctus (Giard), on leaves and pods. Bulletin of Entomological Research 55: 333349.CrossRefGoogle Scholar
Hamai, J., and Huffaker, C.B.. 1978. Potential of predation by Metaseiulus occidentalis in compensating for increased, nutritionally induced, power of increase of Tetranychus urticae. Entomophage 23: 225237.CrossRefGoogle Scholar
Larsson, S. 1989. Stressful times for the plant stress – insect performance hypothesis. Oikos 56: 277283.CrossRefGoogle Scholar
Mopper, S., and Whitham, T.G.. 1992. The plant stress paradox: Effects on pinyon sawfly sex ratios and fecundity. Ecology 73: 515525.CrossRefGoogle Scholar
Perju, T. 1982. Selective pesticides in controlling red clover seed pests. Acta Phytopathologica Academiae Scientiarum Hungaricae 17: 171178.Google Scholar
Spencer, H.J., Scott, N.E., Port, G.R., and Davison, A.W.. 1988. Effects of roadside conditions on plants and insects. I. Atmospheric conditions. Journal of Applied Ecology 25: 699707.CrossRefGoogle Scholar
Stolz, L.P., Chaplin, C.E., Lasheen, A.M., and Rodriguez, J.G.. 1970. Mineral nutrition of strawberry plants in relation to mite injury. Journal of American Horticultural Science 95: 601603.CrossRefGoogle Scholar
van de Vrie, M., and Boersma, A.. 1970. The influence of the predaceous mite Typhlodromus (A.) potentillae (Garman) on the development of Panonychus ulmi (Koch) on apple grown under various nitrogen conditions. Entomophaga 15: 291304.CrossRefGoogle Scholar
Wargo, P.M. 1978. Gypsy moth handbook: Judging vigor of deciduous hardwoods. USDA Forest Pest Research and Development Program, Agricultural Information Bulletin 418: 15 pp.Google Scholar
Wargo, P.M. 1981. Measuring response of trees to defoliation stress. pp. 248–255 in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Toward Integrated Pest Management. United States Forest Service Technical Bulletin 1584: 757 pp. Washington, DC.Google Scholar
Wermelinger, B., and Delucchi, V.. 1990. Effect of sex-ratio on multiplication of the two-spotted spider mite as affected by leaf nitrogen. Experimental and Applied Acarology 9: 1118.CrossRefGoogle Scholar
Wermelinger, B., Oertli, J.J., and Delucchi, V.. 1985. Effect of host plant nitrogen fertilization on the biology of the two-spotted spider mite, Tetranychus urticae. Entomologia Experimentalis et Applicata 38: 2328.CrossRefGoogle Scholar
White, T.C.R. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63: 90105.CrossRefGoogle Scholar
Wilson, L.T., Smilanick, J.M., Hoffmann, M.P., Flaherty, D.L., and Ruiz, S.M.. 1988. Leaf nitrogen and position in relation to population parameters of Pacific spider mite, Tetranychus pacificus (Acari: Tetranychidae) on grapes. Environmental Entomology 17: 964968.CrossRefGoogle Scholar