Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T14:31:16.718Z Has data issue: false hasContentIssue false

Host selection and reproductive performance of Phloeosinus bicolor (Coleoptera: Curculionidae: Scolytinae) in indigenous and exotic Cupressus in Tunisia

Published online by Cambridge University Press:  02 April 2012

Raoudha Belhabib
Affiliation:
Faculté des Sciences, Campus Universitaire 2092, Université Tunis El Manar, Manar II, Tunisie, et Laboratoire d'Entomologie, Institut National de Recherche en Genie Rural Eaux et Forêts, B.P. 10, 2080, Ariana, Tunisie
François Lieutier*
Affiliation:
Université d'Orléans, Laboratoire de Biologie des Ligneux et des Grandes Cultures, Unité Propre de Recherche de l'Enseignement Supérieur, Equipe Associée 1207, B.P. 6759, F-45067 Olivet, France
Mohamed Lahbib Ben Jamaa
Affiliation:
Laboratoire d'Entomologie, Institut National de Recherche en Genie Rural Eaux et Forêts, B.P. 10, 2080, Ariana, Tunisie
Said Nouira
Affiliation:
Faculté des Sciences, Campus Universitaire 2092, Université Tunis El Manar, Manar II, Tunisie
*
1Corresponding author (e-mail: francois.lieutier@univ-orleans.fr).

Abstract

Host preferences and reproductive performance of the juniper bark beetle, Phloeosinus bicolor (Brulle), on logs from different parts of the bole of indigenous Cupressus sempervirens L. (Cupressaceae) and exotic C. arizonica Greene and C. sempervirens var. atlantica (Gaussen) Silba were experimentally studied in the field and laboratory in Tunisia. Attack densities were around 1/dm2 in the field, fecundity was 10 – 25 eggs per female’s gallery, with a sex ratio close to 1. There was no effect of cypress taxon or log category on host selection or attack parameters (attack density, density of systems, density of galleries, rate of successful attacks), although values for C. sempervirens tended to be higher than those for C. arizonica. Reproductive performance (gallery length and fecundity) was highest in C. arizonica and lowest in C. sempervirens var. atlantica, with C. sempervirens in an intermediate position; egg densities did not differ. Gallery length and fecundity showed a significant linear correlation but were lower in C. sempervirens var. atlantica than in the other two taxa. Thus there seems to be no relationship between host preference and host suitability in P. bicolor: its ability to choose and oviposit in various cypress taxa fits with its polyphagous status.

Résumé

Les préférences d’hôte et les performances reproductives de Phloeosinus bicolor (Brulle) ont été étudiées expérimentalement en Tunisie, sur le terrain et au laboratoire, sur des rondins issus de diverses parties du tronc de l’espèce indigène Cupressus sempervirens L. (Cupressaceae) et des espèces exotiques C. arizonica Greene et C. sempervirens var. atlantica (Gaussen) Silba. Les densités d’attaque ont été de 1/dm2 environ sur le terrain, la fécondité s’est située entre 10 et 25 oeufs par galerie femelle, avec une sex ratio proche de 1. L’espèce d’arbre et le type de rondin n’ont eu aucun effet sur les paramètres d’attaque et de sélection de l’hôte (densité d’attaque, densité des systèmes, densité des galeries, taux d’attaques réussies), bien que les valeurs de ces paramètres semblaient plus élevées chez C. sempervirens que chez C. arizonica. Les performances reproductives (longueur des galeries et fécondité) ont été les plus élevées chez C. arizonica et les plus faibles chez C. sempervirens var. atlantica, avec C. sempervirens en position intermédiaire; la densité des oeufs n’était pas différente. Une corrélation linéaire significative a été trouvée entre la longueur des galeries et la fécondité mais plus faible chez C. sempervirens var. atlantica que chez les deux autres taxa. Aucune relation ne semble donc exister chez P. bicolor entre choix de l’hôte et adéquation de celui-ci à la reproduction : la capacité de cet insecte à choisir et à pondre sur divers taxa de cyprès est en accord avec son statut de polyphage.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R.P., Zanoni, T.A., Lara, A., Barrero, A.F., and Cool, L.G. 1997. Comparisons among Cupressus arizonica Greene, C. benthamii Endl., C. lindleyi Klotz. ex Endl., and C. lusitanica Mill. using leaf essential oils and DNA fingerprinting. Journal of Essential Oil Research, 9: 303309.CrossRefGoogle Scholar
Agosta, S.J. 2006. On ecological fitting, plant—insect associations, herbivore host shifts, and host plant selection. Oikos, 114(3): 556565 doi:10.1111/j.2006.0030-1299.15025.x.CrossRefGoogle Scholar
Balachowsky, A.S. 1949. Coléoptères scolytides. Faune de France. Vol. 50. Lechevalier, Paris.Google Scholar
Barrero, A.F., Herrador, M.M., Arteaga, P., Quilez, J., Aitigri, M., and Bennamara, A. 2005. Chemical composition of the essential oils of Cupressus atlantica Gaussen. Journal of Essential Oil Research, 17: 225226.Google Scholar
Belhabib, R., Ben Jamâa, M.L., and Nouira, S. 2007. Biological characteristics of the cypress bark beetles Phloeosinus aubei in the Kessra forest, center of Tunisia. Tunisian Journal of Plant Protection, 2: 99108.Google Scholar
Bernays, E.A., and Chapman, R.F. 1994. Host plant selection by phytophagous insects. Chapman and Hall, New York.CrossRefGoogle Scholar
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle — fungi associations. BioScience, 22(10): 598602 doi:10.2307/1296206.CrossRefGoogle Scholar
Bertheau, C., Sallé, A., Roux-Morabito, G., Garcia, J., Certain, G., and Lieutier, F. 2009. Preference—performance relationship and influence of plant relatedness on host use by Pityogenes chalcographus L. (Coleoptera: Scolytinae). Agricultural and Forest Entomology, 11: 389396.CrossRefGoogle Scholar
Bouhot, L., Lieutier, F., and Debouzie, D. 1988. Spatial and temporal distribution of attacks by Tomicus piniperda L., and Ips sexdentatus Boern. (Col., Scolytidae) on Pinus sylvestris. Journal of Applied Entomology, 106(1–5): 356371 doi:10.1111/j.1439-0418.1988.tb00604.x.CrossRefGoogle Scholar
Brignolas, F., Lieutier, F., Sauvard, D., Yart, A., Drouet, A., and Claudot, A.-C. 1995. Changes in soluble-phenol content of Norway-spruce (Picea abies Karst.) phloem in response to wounding and inoculation with Ophiostoma polonicum. European Journal of Forest Pathology, 25(5): 253265 doi:10.1111/j.1439-0329.1995.tb01010.x.CrossRefGoogle Scholar
Byers, J.A. 2004. Chemical ecology of bark beetles in a complex olfactory landscape. In Bark and wood boring insects in living trees in Europe: a synthesis. Edited by Lieutier, F., Day, K., Battisti, A., Grégoire, J.-C, and Evans, H.. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 89134.Google Scholar
Chanegriha, N., Baaliouamer, A., and Meklati, B.Y. 1997. GC and GC/M. S. leaf oil analysis of four Algerian cypress species. Journal of Essential Oil Research, 9: 555559.CrossRefGoogle Scholar
Chararas, C. 1962. Scolytides des conifères. Lechevalier, Paris.Google Scholar
Chararas, C. 1973. Faculté d'adaptation d'Orthotomicus erosus Woll. à des conifères autres que ses essences hôtes habituelles. Comptes Rendus de l'Académie des Sciences Serie III Sciences de la Vie, 271: 19041907.Google Scholar
Chararas, C. 1975. Physiologie des insects — spécificité de la réponse des Scolytidae monogames et polygames à l'attraction exercée par les résidus de la digestion. Comptes Rendus de l'Académie des Sciences Serie III Sciences de la Vie, 280: 25672570.Google Scholar
Chararas, C. 1976. Etude de l'attraction primaire et secondaire chez les Phloeosinus (Coléoptère Scolytidae). Comptes Rendus de l'Académie des Sciences Serie III Sciences de la Vie, 282: 17931796.Google Scholar
Chararas, C., Ducauze, C., and Révolon, C. 1978. L'adaptation olfactive st l'allotrophie chez certains Scolytidae spécifiques des conifères. Comptes Rendus de l'Académie des Sciences Serie III Sciences de la Vie, 287: 285288.Google Scholar
Cheraif, I., Hichem, B.J., Hammami, M., and Mighri, Z. 2005. Hydrodistillation kinetic investigation of essential oil from the Tunisian Cupressus sempervirens L. Journal of Essential Oil-Bearing Plants, 8: 165172.Google Scholar
Christiansen, E., Waring, R.H., and Berryman, A.A. 1987. Resistance of conifers to bark beetle attack: searching for general relationships. Forest Ecology and Management, 22(1–2): 89106 doi:10.1016/0378-1127(87)90098-3.CrossRefGoogle Scholar
Evensen, P.C., Solheim, H., Hoiland, K., and Stenersen, J. 2000. Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogens. Forest Pathology, 30: 97108.CrossRefGoogle Scholar
Gallis, A.T., Doulis, A.G., and Papageorgiou, A.C. 2007. Variability of cortex terpene composition in Cupressus sempervirens provenances in Crete, Greece. Silvae Genetica, 56: 294299.CrossRefGoogle Scholar
Jaenike, J. 1990. Host specialization in phytophagous insects. Annual Review of Systematics, 21(1): 243273 doi:10.1146/annurev.es.21.110190.001331.CrossRefGoogle Scholar
Lieutier, F. 2004. Host resistance to bark beetles and its variations. In Bark and wood boring insects in living trees in Europe: a synthesis. Edited by Lieutier, F., Day, K., Battisti, A., Grégoire, J.-C., and Evans, H.. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 135180.Google Scholar
Lieutier, F. 2006. Changing forest communities: role of tree resistance to insects in insect invasions and tree introductions. In Invasive forest insects, introduced forest trees, and altered ecosystems: ecological pest management in global forests of a changing world. Edited by Paine, T.D.. Springer-Verlag, New York. pp. 1551.CrossRefGoogle Scholar
Lieutier, F., Sauvard, D., Brignolas, F., Picron, V., Yart, A., Bastien, C., and Jay-Allemand, C. 1996. Changes in phenolic metabolites of Scots pine phloem induced by Ophiostoma brunneo-ciliatum, a bark-beetle-associated fungus. European Journal of Forest Pathology, 26(3): 145158 doi:10.1111/j.1439-0329.1996.tb00719.x.CrossRefGoogle Scholar
Little, P.D. 2006. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany, 31: 461480.CrossRefGoogle Scholar
Långström, B. 1986. Attack density and brood production of Tomicus piniperda in thinned Pinus sylvestris stems as related to felling date and latitude in Sweden. Scandinavian Journal of Forest Research, 1(1): 351357 doi:10.1080/02827588609382427.CrossRefGoogle Scholar
Mendel, Z. 1983. Effect of pruned and unpruned trap logs of cypress on infestation and development of two Phloeosinus species. Phytoparasitica, 11(2): 8388 doi:10.1007/BF02980715.CrossRefGoogle Scholar
Mendel, Z. 1984. Life history of Phloeosinus armatus Reitter and Phloeosinus aubei Perris (Coleoptera: Scolytidae) in Israel. Journal of Applied Entomology, 108: 8997.Google Scholar
Mulock, P., and Christiansen, E. 1986. The threshold of successful attack by Ips typographus on Picea abies: a field experiment. Forest Ecology and Management, 14(2): 125132 doi:10.1016/0378-1127(86)90097-6.CrossRefGoogle Scholar
Paine, T.D., Raffa, K.F., and Harrington, T.C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology, 42(1): 179206 doi:10.1146/annurev.ento.42.1.179.CrossRefGoogle ScholarPubMed
Pierre-Leandri, C., Fernandez, X., Lizzani-Cuvelier, L., Loiseau, A.-M., Fellous, R., Garnero, J., and Andréoli, C. 2003. Chemical composition of cypress essential oils: volatile constituents of leaf oils from seven cultivated Cupressus species. Journal of Essential Oil Research, 15: 242247.CrossRefGoogle Scholar
Raffa, K.F., and Berryman, A.A. 1987. Interacting selective pressures in conifer-bark beetle systems: A basis for reciprocal adaptations? American Naturalist, 129(2): 234262 doi:10.1086/284633.CrossRefGoogle Scholar
Riaz, M., Khalid, M.R., and Chaudhary, F.M. 1999. Volatile constituents of the leaves of Pakistani Cupressus sempervirens and Thuja orientalis. Pakistan Journal of Scientific Industrial Research, 42: 98101.Google Scholar
SAS Institute Inc. 1989: SAS/STAT user's guide. Version 6. 4th ed. Vol. 2. SAS Institute Inc., Cary, North Carolina.Google Scholar
Sauvard, D. 1989. Capacités de multiplication de Tomicus piniperda L. (Col., Scolytidae) 1. Effets de la densité d'attaque. Journal of Applied Entomology, 108(1–5): 164181 doi:10.1111/j.1439-0418.1989.tb00446.x.CrossRefGoogle Scholar
Sauvard, D. 2004. General biology of bark beetles. In Bark and wood boring insects in living trees in Europe: a synthesis. Edited by Lieutier, F., Day, K., Battisti, A., Grégoire, J.-C, and Evans, H.. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 6388.Google Scholar
Wallin, K.F., and Raffa, K.F. 2002. Density-mediated responses of bark beetles to host allelochemicals: a link between individual behaviour and population dynamics. Journal of Ecological Entomology, 27(4): 484492 doi:10.1046/j.1365-2311.2002.00431.x.CrossRefGoogle Scholar
Weslien, J., and Regnander, J. 1990. Colonization densities and offspring production in the bark beetle Ips typographus (L.) in standing spruce trees. Journal of Applied Entomology, 109(1–5): 358366 doi:10.1111/j.1439-0418.1990.tb00064.x.CrossRefGoogle Scholar
Zocchi, R. 1956. Insetti del cepresso. III. Genre Phloeosinus Chap. (Coleoptera: Scolytidae) in Italy. Redia (Firenze), 41: 129226.Google Scholar