Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T17:29:14.809Z Has data issue: false hasContentIssue false

HABITAT CHARACTERISTICS AND GRASSHOPPER COMMUNITY DYNAMICS ON MIXED-GRASS RANGELAND1

Published online by Cambridge University Press:  31 May 2012

Mark A. Quinn
Affiliation:
Department of Plant Sciences, South Dakota State University, Brookings, South Dakota, USA 57007
R.L. Kepner
Affiliation:
Department of Plant Sciences, South Dakota State University, Brookings, South Dakota, USA 57007
D.D. Walgenbach
Affiliation:
Department of Plant Sciences, South Dakota State University, Brookings, South Dakota, USA 57007
R.A. Bohls
Affiliation:
Department of Plant Sciences, South Dakota State University, Brookings, South Dakota, USA 57007
P.D. Pooler
Affiliation:
Department of Plant Sciences, South Dakota State University, Brookings, South Dakota, USA 57007
R. Nelson Foster
Affiliation:
USDA/APHIS Methods Development, Pink Bollworm and Range Pests Station, 4125 East Broadway Road, Phoenix, Arizona, USA 85040
K.C. Reuter
Affiliation:
USDA/APHIS Methods Development, Pink Bollworm and Range Pests Station, 4125 East Broadway Road, Phoenix, Arizona, USA 85040
J.L. Swain
Affiliation:
USDA/APHIS Methods Development, Pink Bollworm and Range Pests Station, 4125 East Broadway Road, Phoenix, Arizona, USA 85040

Abstract

A study was conducted in Butte County of western South Dakota to determine the relationships between habitat characteristics and spatial and temporal changes in community structure of grasshoppers on mixed-grass rangeland. Detrended correspondence analysis (DCA) of 29 undisturbed grasshopper communities and correlation analysis of DCA axis values and habitat variables denned specific spatial gradients underlying the community structure of grasshoppers. Results indicated that grasshopper communities changed along a primary gradient of percentage of coverage of grasses, particularly Buchloe dactyloides (Nutt.) Engelm., and a secondary gradient of percentage composition of clay and sand in the soil.

DCA of 24 grasshopper communities sampled in 1986 and 1987, multiple regression analysis, and factor analysis were used to determine the relationships between specific habitat characteristics and changes in communities of grasshoppers treated with either a nonselective insecticidal spray (malathion) or a selective insecticidal bait (bran bait with carbaryl). Results indicated that between-year change in community composition, or the difference between post-treatment communities in 1986 and 1987, was positively correlated with percentage of coverage of total grasses and forbs. Community malleability, defined as the tendency of a community to return to its predisturbed state, was greater in habitats with high coverages of Agropyron smithii Rydb. and Carex spp., low coverage of Bouteloua gracilis (H.B.K.) Lag. ex Steud., and low species richness of grasses. Our results emphasize the importance of habitat characteristics in structuring undisturbed grasshopper communities and in community change after perturbation with insecticides.

Résumé

Une étude a été poursuivie dans Butte County, dans l’ouest du South Dakota, pour évaluer le rapport entre les caractéristiques de l’habitat et les changements spatiotemporels de la structure communautaire de criquets au grand pâturage consistant de graminacées assorties. L’analyse de correspondance dévalorisée (ACD) de 29 communautés non-dérangées de criquets et l’analyse des valeurs des axes de l’ACD et des paramètres variables de l’habitat ont définies les gradients spécifiques sous-jacents de la structure communautaire des criquets. Les résultats ont signalé que les communautés de criquets se changent le long du gradient primaire du pourcentage de couverture par les graminacées, surtout par Buchloe dactyloides (Nutt.) Engelm., et le long du gradient secondaire du pourcentage d’argile et de sable dans le sol.

L’ACD de 24 communautés de criquets échantillonnées en 1986 et 1987, l’analyse multiple de régression et l’analyse factorielle ont été utilisées pour évaluer le rapport entre les caractéristiques spécifiques d’habitat et les changements des communautés de criquets traitées, soit par pulvérisation d’un insecticide non-sélectif (malathion), soit d’un appât d’insecticide sélectif (un appât de son de froment avec carbaryle). Les résultats ont démontré que les changements en composition des communautés d’année en année ou que les différences entre les communautés suite aux traitements de 1986 et 1987, ont eu une corrélation positive avec le pourcentage de couverture globale par les graminacées et les plantes herbacées dicotylédones. La plasticité des communautés, définie comme la tendance d’une communauté de revenir à son état non-dérangé, a été plus grande aux habitats fortement couverts d’Agropyron smithii Rydb. et de Carex spp., peu couverts de Bouteloua gracilis (H.B.K.) Lag. ex Steud., et pauvres en espèces de graminacées. Nos résultats soulignent l’importance des caractéristiques de l’habitat pour la structure des communautés non-dérangées de criquets et pour les changements des communautés suite à la perturbation à cause d’insecticides.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N.L. 1964. Some relationships between grasshoppers and vegetation. Ann. ent. Soc. Am. 57: 736742.Google Scholar
Anderson, R.V., Tracy, C.R., and Abramsky, Z.. 1979. Habitat selection in two species of short-homed grass-hoppers. The role of thermal and hydric stresses. Oecologia 38: 359374.CrossRefGoogle Scholar
Archer, S., Garrett, M.G., and Detling, J.K.. 1987. Rates of vegetation change associated with prairie dog (Cynomys ludovicianus) grazing in North American mixed-grass prairie. Vegetatio 72: 159166.Google Scholar
Belovsky, G.E. 1986. Generalist herbivore foraging and its role in competitive interactions. Am. Zool. 26: 5169.Google Scholar
Capinera, J.L., and Sechrist, T.S.. 1982. Grasshoppers (Acrididae) of Colorado: identification, biology and management. Colo. State Univ. Agric. Exp. Stn. Bull. 584S.Google Scholar
Chappell, M.A. 1983. Metabolism and thermoregulation in desert and montane grasshoppers. Oecologia 56: 126131.Google Scholar
Daubenmire, R.F. 1959. A canopy-coverage method of vegetational analysis. Northwest Sci. 33: 4364.Google Scholar
Evans, E.W. 1988 a. Grasshopper (Insecta: Orthoptera: Acrididae) assemblages of tallgrass prairie: influences of fire frequency, topography, and vegetation. Can. J. Zool. 66: 14951501.Google Scholar
Evans, E.W. 1988 b. Community dynamics of prairie grasshoppers subjected to periodic fire: predictable trajectories or random walks in time? Oikos 52: 283292.Google Scholar
Evans, E.W. 1989. Interspecific interactions among phytophagous insects of tallgrass prairie: an experimental test. Ecology 70: 435444.Google Scholar
Evans, E.W., Rogers, R.A., and Opfermann, D.J.. 1983. Sampling grasshoppers (Orthoptera: Acrididae) on burned and unburned tallgrass prairie: night trapping vs. sweeping. Environ. Ent. 12: 14491454.CrossRefGoogle Scholar
Gangwere, S.K. 1976. The food-habits and ecology of Acrididae in an old-field community in southwestern Michigan. Great Lakes Ent. 9: 83123.Google Scholar
Gauch, H.G. Jr., 1985. Multivariate Analysis in Community Ecology. Cambridge University Press, New York, NY.Google Scholar
Gibson, D.J. 1988. The relationship of sheep grazing and soil heterogeneity to plant spatial patterns in dune grassland. J. Ecol. 76: 233252.CrossRefGoogle Scholar
Gibson, D.J., and Hulbert, L.C.. 1987. Effects of fire, topography and year-to-year climatic variation on species composition in tallgrass prairie. Vegetatio 72: 175185.Google Scholar
Hill, M.O. 1979. Decorana—A Fortran Program for Detrended Correspondence Analysis and Reciprocal Averaging. Section of Ecology and Systematics, Cornell University, Ithaca, NY.Google Scholar
Hill, M.O., and Gauch, H.G. Jr., 1980. Detrended correspondence analysis: An improved ordination technique. Vegetatio 42: 4758.CrossRefGoogle Scholar
Isely, F.B. 1937. Seasonal succession, soil relations, numbers, and regional distribution of northeastern Texas acridians. Ecol. Monogr. 7: 317344.Google Scholar
Isely, F.B. 1938 a. Survival value of acridian protective coloration. Ecology 19: 370389.Google Scholar
Isely, F.B. 1938 b. The relations of Texas Acrididae to plants and soils. Ecol. Monogr. 8: 551604.Google Scholar
Joern, A. 1979 a. Resource utilization and community structure in assemblages of and grassland grasshoppers (Orthoptera: Acrididae). Trans. Am. ent. Soc. 105: 253300.Google Scholar
Joern, A. 1979 b. Feeding patterns in grasshoppers (Orthoptera: Acrididae): Factors influencing diet specialization. Oecologia 38: 325347.Google Scholar
Joern, A. 1982. Distribution, densities, and relative abundances of grasshoppers (Orthoptera: Acrididae) in a Nebraska sandhills prairie. Prairie Natur. 14: 3745.Google Scholar
Joern, A. 1983. Host plant utilization by grasshoppers (Orthoptera: Acrididae) from a sandhills prairie. J. Range Mgnt. 36: 793797.Google Scholar
Joern, A., Mitschler, R., and O'Leary, H.. 1986. Activity and time budgets of three grasshopper species (Orthoptera: Acrididae) from a sandhills grassland. J. Kans. ent. Soc. 59: 16.Google Scholar
Johnson, D.L. 1989. Spatial analysis of the relationship of grasshopper outbreaks to soil classification. pp. 357370in McDonald, L.L., Manly, B.F., Lockwood, J.A., and Logan, J. (Eds.), Estimation and Analysis of Insect Populations. Springer-Verlag, New York, NY.Google Scholar
Kemp, W.P., Harvey, S.J., and O'Neill, K.M.. 1990 a. Habitat and insect biology revisited: The search for patterns. Am. Ent. 36: 4449.Google Scholar
Kemp, W.P., Harvey, S.J., and O'Neill, K.M.. 1990 b. Patterns of vegetation and grasshopper community composition. Oecologia 83: 299308.Google Scholar
MacArthur, R.H., and Wilson, E.O.. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
Mulkern, G.B. 1980. Population fluctuations and competitive relationships of grasshopper species (Orthoptera: Acrididae). Trans. Am. ent. Soc. 106: 141.Google Scholar
Mulkern, G.B., Toczek, D.R., and Brusven, M.A.. 1964. Biology and ecology of North Dakota Grasshoppers. II. Food habits and preference of grasshoppers associated with the Sand Hill Prairie. N. Dakota Agric. Exp. Stn. Res. Rep. 11.Google Scholar
Onsager, J. A., and Henry, J.E.. 1977. A method for estimating the density of rangeland grasshoppers (Orthoptera: Acrididae) in experimental plots. Acrida 6: 231237.Google Scholar
Otte, D. 1975. Plant preference and plant succession: A consideration of the evolution of plant preference in Schistocerca. Oecologia 18: 129144.Google Scholar
Otte, D. 1976. Species richness patterns of New World desert grasshoppers in relation to plant diversity. J. Biogeogr. 3: 197209.CrossRefGoogle Scholar
Otte, D., and Joern, A.. 1977. On feeding patterns in desert grasshoppers and the evolution of specialized diets. Proc. Acad. Natur. Sci. Philadelphia 128: 89126.Google Scholar
Pianka, E.R. 1970. On r- and K-selection. Am. Natur. 104: 592597.Google Scholar
Pickford, R. 1958. Observations on the reproductive potential of Melanoplus bilituratus (Wlk.) (Orthoptera: Acrididae) reared on different food plants in the laboratory. Can. Ent. 90: 483485.Google Scholar
Pickford, R. 1962. Development, survival and reproduction of Melanoplus bilituratus (Wlk.) (Orthoptera: Acrididae) reared on various food plants. Can. Ent. 94: 859869.Google Scholar
Pulliam, H.R. 1988. Sources, sinks, and population regulation. Am Natur. 132: 652661.Google Scholar
Quinn, M.A., Kepner, R.L., Walgenbach, D.D., Bohls, R.A., Pooler, P.D., Foster, R.N., Reuter, K.C., and Swain, J.L.. 1989. Immediate and second-year impact of insecticide and insecticidal bait treatments on populations of rangeland grasshoppers. Can. Ent. 121: 589602.Google Scholar
Quinn, M.A., Kepner, R.L., Walgenbach, D.D., Foster, R.N., Bohls, R.A, Pooler, P.D., Reuter, K.C., and Swain, J.L.. 1990. Effect of habitat and perturbation on populations and community structure of darkling beetles (Coleoptera: Tenebrionidae) on mixed grass rangeland. Environ. Ent. 19: 17461755.Google Scholar
Quinn, M.A., and Walgenbach, D.D.. 1990. Influence of grazing history on the community structure of grasshoppers of a mixed-grass prairie. Environ. Ent. 19: 17561766.Google Scholar
Richards, O.W., and Waloff, N.. 1954. Studies on the biology and population dynamics of British grasshoppers. Anti-locust Bull. 17.Google Scholar
SAS Institute. 1985. SAS/STAT Guide for Personal Computers, Version 6 Edition. SAS Institute, Cary, NC.Google Scholar
Shotwell, R.L. 1941. Life histories and habits of some grasshoppers of economic importance on the Great Plains. USDA Tech. Bull. 774.Google Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. Freeman, San Francisco, CA.Google Scholar
Southwood, T.R.E. 1988. Tactics, strategies and templets. Oikos 52: 318.CrossRefGoogle Scholar
Van Bruggen, T. 1985. The Vascular Plants of South Dakota. Iowa State University Press, Ames, IA.Google Scholar
Whitham, T.G. 1989. Plant hybrid zones as sinks for pests. Science 244: 14901493.Google Scholar
Whitman, D.W. 1987. Thermoregulation and daily activity patterns in a black desert grasshopper, Taeniopoda eques. Anim. Behav. 35: 18141828.Google Scholar