Skip to main content Accessibility help


  • R.S. Bourchier (a1)


All larval instars of Compsilura concinnata (Meigan) (Diptera: Tachinidae) develop in the midgut of the gypsy moth [Lymantria dispar (L.) (Lepidoptera: Lymantriidae)] between the peritrophic membrane and gut wall. Parasitoid larvae placed artificially in the host haemocoel quickly moved to this characteristic position. There was a positive relationship between parasitoid size, as measured by the weight of the puparium, and the potential fecundity of female flies. When C. concinnata parasitized third-instar larval hosts, there were fewer successful multiple emergences, parasitoid larvae took longer to develop, and puparia were significantly smaller than those of parasitoids attacking fifth-instar hosts.

Gypsy moth larvae grew more slowly on diets supplemented with 0.5 and 2.5% tannic acid than on non-supplemented diets. Similarly, C. concinnata females were smaller (with associated reduction in fecundity) when emerging from hosts feeding on the tannin diets than when hosts were feeding on control diets. The effect of tannic acid on the parasitoid was indirect and was the result of a reduction in host quality on the tannin diets. Reduction in parasitoid fecundity associated with tritropic interactions (among the host plant, the gypsy moth, and the parasitoid) may provide a possible explanation for the irregular impact of C. concinnata on gypsy moth populations.

Tous les stades larvaires de Compsilura concinnata (Meigan) (Diptera : Tachinidae) se développent dans l’intestin moyen de la Spongieuse [Lymantria dispar (L.) (Lepidoptera : Lymantriidae)], entre la membrane péritrophique et la paroi de l’intestin. Des larves du parasitoïde placées artificiellement dans l’hémocèle de leur hôte ont eu tôt fait de gagner le site caractéristique entre la paroi de l’intestin moyen et la membrane péritrophique. Il y a une corrélation positive entre la taille du parasitoïde, estimée en fonction de la masse du puparium, et la fécondité potentielle des mouches femelles. Lorsque les mouches parasitent des larves de troisième stade de spongieuses, il y a moins d’émergences multiples réussies, le développement des larves du parasitoïde est plus lent et les pupariums sont significativement plus petits que chez les mouches parasites de larves de spongieuses de cinquième stade.

Le développement des larves de spongieuses nourries de diètes additionnées de 0,5 ou 2,5% d’acide tannique est plus lent que celui des larves nourries de régimes témoins. De même, les femelles de C. concinnata sont plus petites et leur fécondité est réduite lorsqu’elles se développent sur des spongieuses nourries de diètes à tanins. L’effet de l’acide tannique sur le parasitoïde est indirect et il résulte d’une réduction de la qualité de l’hôte sous l’influence de l’acide tannique. La réduction de la fécondité du parasitoïde associée à des interactions à trois niveaux (plante hôte, spongieuse, parasite) explique probablement pourquoi l’impact de C. concinnata sur les populations de spongieuses est variable.

[Traduit par la rédaction]



Hide All
Arnaud, P.H. 1978. A Host-Parasitoid Catalog of North American Tachinidae (Diptera). USDA Misc. Publ. 1319. 860 pp.
Barbosa, P., Capinera, J.L., and Harrington, E.A.. 1975. The gypsy moth parasitoid complex in western Massachusetts: A study of parasitoids in areas of low and high density. Environ. Ent. 4: 842846.
Barbosa, P., and Krischik, V.A.. 1987. Influence of alkaloids on feeding preference of eastern deciduous forest trees by the gypsy moth, Lymantria dispar. Am. Nat. 130: 569.
Barbosa, P., and Letourneau, D.K.. 1988. Novel Aspects of Insect–Plant Interactions. Wiley, New York, NY. 362 pp.
Bernays, E.A., Driver, G. Cooper, and Bilgener, M.. 1989. Herbivores and plant tannins. Adv. Ecol. Res. 19: 263302.
Boethel, D.J., and Eikenbary, R.D.. 1986. Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Horwood, West Sussex. 222 pp.
Burgess, A.F., and Crossman, S.S.. 1929. Imported enemies of the gypsy moth and the brown-tail moth. USDA Tech. Bull. 86. 147 pp.
Draper, N.R., and Smith, H.. 1981. Applied Regression Analysis, 2nd ed. Wiley, New York, NY. 709 pp.
Feeny, P. 1976. Plant apparency and chemical defense. Rec. Adv. Phytochem. 10: 140.
Elkinton, J.S., and Liebhold, A.M.. 1990. Population dynamics of gypsy moth in North America. A. Rev. Ent. 35: 571596.
Gould, J.R., Elkinton, J.S., and Wallner, W.E.. 1990. Density-dependent suppression of experimentally created gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), populations by natural enemies. J. anim. Ecol. 59: 213233.
Hagerman, A.E., and Butler, L.G.. 1978. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 26: 809812.
Higashiura, Y. 1987. Larval densities and a life-table for the gypsy moth, Lymantria dispar, estimating using the head-capsule collection method. Ecol. Ent. 12: 2530.
Karowe, D.N. 1989. Differential effect of tannic acid on two tree-feeding Lepidoptera: Implications for theories of plant anti-herbivore chemistry. Oecologia 80: 507512.
Lance, D.R., Elkinton, J.S., and Schwalbe, C.P.. 1986. Feeding rhythms of gypsy moth larvae: Effect on food quality during outbreaks. Ecology 67: 16501654.
Martin, J.S., and Martin, M.M.. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in nature foliage of six oak species. Oecologia 54: 205211.
McDougall, C., Philogène, B.J.R., Arnason, J.T., and Donskov, N.. 1988. Comparative effects of two-plant secondary metabolites on host–parasitoid association. J. Chem. Ecol. 14: 12391252.
ODell, T.M., Butt, C.A., and Bridgeforth, A.W.. 1985. Lymantria dispar. pp. 355–367 in Singh, P., and Moore, R.F. (Eds.), Handbook of Insect Rearing, Vol. 2. Elsevier, Amsterdam. 514 pp.
Orr, D.B., and Boethel, D.J.. 1986. Influence of plant antibiosis through four trophic levels. Oecologia 70: 242249.
Rhoades, D.F., and Gates, R.G.. 1976. Toward a general theory of plant antiherbivore chemistry. Rec. Adv. Phytochem. 10: 168213.
Rossiter, M., Schultz, J.C., and Baldwin, I.T.. 1988. Relationships among defoliation, red oak phenolics and gypsy moth growth and reproduction. Ecology 69: 267277.
Schultz, J.C., and Baldwin, I.T.. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217: 149151.
Ticehurst, M., Fusco, R.A., Kling, R.P., and Unger, J.. 1978. Observations on parasites of gypsy moth in first cycle infestations in Pennsylvania from 1974–1977. Environ. Ent. 7: 355358.
Vinson, S.B., and Barbosa, P.. 1987. Interrelationships of nutritional ecology of parasitoids. pp. 673–695 in Slansky, F. Jr, and Rodriguez, J.G. (Eds.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. Wiley, New York, NY. 1016 pp.
Wilkinson, L. 1989. SYSTAT: The System for Statistics. SYSTAT, Inc, Evanston, IL. 882 pp.

Related content

Powered by UNSILO


  • R.S. Bourchier (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.