Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T02:03:33.596Z Has data issue: false hasContentIssue false

FEEDING BY COLORADO POTATO BEETLE LARVAE (COLEOPTERA: CHRYSOMELIDAE) IN FIELD CAGES: MEASUREMENTS AND A MODEL

Published online by Cambridge University Press:  31 May 2012

Derek J. Lactin*
Affiliation:
Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
N.J. Holliday
Affiliation:
Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
L.L. Lamari
Affiliation:
Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
*
1 Author to whom reprint requests should be directed.

Abstract

Feeding rates of Colorado potato beetle larvae were measured in 24-h trials in small field cases on potato leaflets that remained attached to the plants. Four models were constructed to explain the results; these differed by including or excluding the effect of insolative heating on larval body temperature, and by including or excluding thermoregulatory behavior, in all combinations. In all instars, observed feeding was independent of mean body temperature during the trial as estimated by each model, and less than the amount predicted using this mean to drive constant-temperature feeding rate functions.

The four models were assessed by regressing model predictions on observed feeding rates. For first and second instars, there was no relationship between observed feeding and the amount predicted by any of the models, probably because the feeding rate was small relative to the precision of the measurements. For third and fourth instars, predictions from the model that included both insolative heating and behavioral thermoregulation did not differ significantly from observations. Simulations using this model suggested that daily mean body temperature fails to predict foliage consumption because this mean cannot account for the effects of transient occurrences of suboptimal temperatures.

Résumé

Les taux d’alimentation ont été mesurés chez des larves du Doryphore de la pomme de terre au cours d’expériences de 24 h, dans de petites cages installées dans des champs de pomme de terre sur de jeunes feuilles encore attachées aux plants. Quatre modèles propres à expliquer les résultats ont été élaborés, modèles tenant compte ou non de l’effet de la chaleur du soleil sur la température du corps, tenant compte ou non du comportement thermorégulateur, selon toutes les combinaisons possibles. Chez tous les stades et d’après tous les modèles, la consommation d’aliments était indépendante de la température corporelle moyenne au cours de l’expérience et inférieure à la quantité prévue en utilisant cette moyenne pour ajuster les fonctions relatives au taux d’alimentation à une température constante.

Les quatre modèles ont été évalués en mesurant la régression entre les prédictions du modèle et les taux d’alimentation observés. Chez les larves de premier et de deuxième stades, il n’y avait pas de relation entre les quantités consommées et les quantités prévues d’après les modèles, probablement parce que les taux d’alimentation étaient faibles relativement à la précision des mesures. Chez les larves de troisième et quatrième stades, les prédictions établies d’après le modèle qui tenait compte à la fois de la chaleur du soleil et du comportement thermorégulateur ne différaient pas significativement des valeurs observées. Des simulations basées sur ce modèle indiquent que la température corporelle moyenne quotidienne ne permet pas de prévoir la quantité de feuillage consommée parce que cette moyenne ne tient pas compte des effets des températures suboptimales qui prévalent occasionnellement.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ferro, D.N., Logan, J.A., Voss, R.H., and Elkinton, J.S.. 1985. Colorado potato beetle (Coleoptera: Chrysomelidae) temperature-dependent growth and feeding rates. Environmental Entomology 14: 343348.CrossRefGoogle Scholar
Hagstrum, D.W., and Milliken, G.A.. 1991. Modelling differences in insect developmental time between constant and fluctuating temperatures. Annals of the Entomological Society of America 84: 369379.CrossRefGoogle Scholar
Lactin, D.J., and Holliday, N.J.. 1994. Behavioral responses of Colorado potato beetle larvae to combinations of temperature and insolation, under field conditions. Entomologia Experimentalis et Applicata 72: 255263.CrossRefGoogle Scholar
Lactin, D.J., Holliday, N.J., and Lamari, L.L.. 1993. Temperature dependence and constant-temperature diel aperiodicity of feeding by Colorado potato beetle larvae (Coleoptera: Chrysomelidae) in short-duration laboratory trials. Environmental Entomology 22: 784790.CrossRefGoogle Scholar
Logan, P.A., Casagrande, R.A., Faubert, H.H., and Drummond, F.A.. 1985. Temperature-dependent development and feeding of immature Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Environmental Entomology 14: 275283.CrossRefGoogle Scholar
Lowman, M.D. 1987. Relationships between leaf growth and holes caused by herbivores. Australian Journal of Ecology 12: 189192.CrossRefGoogle Scholar
May, M.L. 1982. Body temperature and thermoregulation of the Colorado potato beetle, Leptinotarsa decemlineata. Entomologia Experimentalis et Applicata 31: 413420.CrossRefGoogle Scholar
Robertson, G.W., and Russelo, D.A.. 1968. Astrometeorological Estimator. Agriculture Canada Technical Bulletin 14: 22 pp.Google Scholar
SAS Institute. 1988. SAS/STAT User's Guide. Release 6.03 edition. SAS Institute, Cary, NC. 1028 pp.Google Scholar
Smith, G.W. 1959. Solar radiation and the duration of sunshine in Trinidad, West Indies. Quarterly Journal of the Royal Meteorological Society 85: 421423.CrossRefGoogle Scholar
Stevenson, R.D. 1985. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. American Naturalist 126: 362386.CrossRefGoogle Scholar
Tauber, C.A., Tauber, M.J., Gollands, B., Wright, R.J., and Obrycki, J.J.. 1988. Preimaginal development and reproductive responses to temperature in two populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 81: 755763.CrossRefGoogle Scholar
Walgenbach, J.F., and Wyman, J.A.. 1984. Colorado potato beetle (Coleoptera: Chrysomelidae) development in relation to temperature in Wisconsin. Annals of the Entomological Society of America 77: 604609.CrossRefGoogle Scholar