Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T11:41:10.072Z Has data issue: false hasContentIssue false

EMERGENCE, HOST ATTACK, AND OVERWINTERING BEHAVIOR OF THE EASTERN LARCH BEETLE, DENDROCTONUS SIMPLEX LECONTE (COLEOPTERA: SCOLYTIDAE), IN NEWFOUNDLAND

Published online by Cambridge University Press:  31 May 2012

David W. Langor
Affiliation:
Biology Department, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
Arthur G. Raske
Affiliation:
Canadian Forestry Service, Newfoundland Forestry Center, PO Box 6028, St. John's, Newfoundland, Canada A1C 5X8

Abstract

Overwintered adults of Dendroctonus simplex LeConte emerged in May and June. One generation and two broods were produced in both 1983 and 1984. Females initiated attacks and males arrived within 2 days. One to four pairs of beetles used each entrance hole but each pair constructed a separate egg gallery.

Emergence, host attack, and re-emergence occurred between 1030 and 1700 hours NDT and at mean air temperatures above 4°C. Peaks of attack, which reflect flight peaks, occurred at temperatures above 10°C. About 90% of all parents re-emerged from first brood trees and 61% from second brood trees.

Only adults overwintered. Freezing temperatures caused complete mortality of immature stages. Thirty-five percent of new brood adults emerged in the fall and re-entered galleries at the base of trees for hibernation. Adult tolerance to cold increased from early fall to mid-winter.

Résumé

Les adultes hivernants de Dendroctonus simplex LeConte ont émergé en mai et en juin. En 1983 et 1984, on a observé une génération et deux couvées. Ce sont les femelles qui ont initié l’attaque, les mâles étant arrivés dans les 2 jours suivants. D’un à quatre couples sont entrés par le même trou, mais chaque couple s’est construit une galerie séparée.

L’émergence, l’attaque de l’hôte et la rémergence se sont produites entre 1030 et 1700 heures NDT, à une température de l’air > 4°C. Les pics d’attaque, réflétant les pics de vol, se sont produits à une température > 10°C. Environ 90% des parents sont rémergés des arbres de première couvée, comparé à 61% des parents lors de la deuxième couvée.

Les adultes seuls ont hiverné. Les températures sous le point de congélation ont causé la mortalité totale des stades immatures. Trente-cinq pourcent des adultes de nouvelle génération ont émergé à l’automne et sont rentrés par des galeries localisées à la base des arbres pour hiberner. La tolérance des adultes au froid a augmenté du début de l’automne jusqu’à la mi-hiver.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D., and Cole, W.E.. 1983. Mountain pine beetle dynamics in lodgepole pine forests, part II: population dynamics. U.S.D.A. For. Serv., Gen. Tech. Rep. INT-145, 59 pp. Intermountain Res. Stn., Ogden, UT.Google Scholar
Blackman, M.W., and Stage, H.H.. 1918. Notes on insects bred from bark and wood of the American larch. N.Y. St. Coll. For., Tech. Publ. 10. Vol. 18: 9115.Google Scholar
Borden, J.H., Chong, L.J., Pratt, K.E.G., and Gray, D.R.. 1983. The application of behavior-modifying chemicals to contain infestations of the mountain pine beetle, Dendroctonus ponderosae. For. Chron. 59: 235239.CrossRefGoogle Scholar
Clarke, L.J., and Carew, G.C.. 1986. Forest insect and disease conditions in Newfoundland and Labrador in 1985. Can. For. Serv., Info. Rep. N-X-241. 33 pp. Newfoundland For. Cent., St. John's, Nfld.Google Scholar
Dewey, J.E., Ciesla, W.M., and Meyer, H.E.. 1974. Insect defoliation as a predisposing agent to a bark beetle outbreak in eastern Montana. Environ. Ent. 3: 722.Google Scholar
Furniss, M.M. 1962. A circular punch for cutting samples of bark infested with beetles. Can. Ent. 94: 959963.CrossRefGoogle Scholar
Furniss, M.M. 1976. Controlled breeding, comparative anatomy and bionomics of Dendroctonus simplex LeConte and Dendroctonus pseudotsugae Hopkins (Coleoptera: Scolytidae). Univ. Idaho Dept. Ent. Anniv. Publ. 15: 109120.Google Scholar
Gehrken, U., and Zackariassen, K.E.. 1977. Variations in the coldhardiness of hibernating Ips acuminatus Gyllenhal (Col., Scolytidae) related to the sun exposure of the habitat. Norw. J. Ent. 24: 149152.Google Scholar
Hall, J.P. 1984. Growth and development of larch in Newfoundland. Paper presented at the Sixth International Workshop on Forest Regeneration at high Latitudes, Edmundston, New Brunswick.Google Scholar
Hopkins, A.D. 1909. Practical information on the scolytid beetles of North American forests. I. Bark beetles of the genus Dendroctonus. U.S.D.A., Bur. Ent., Bull. 83 (part 1): 103106.Google Scholar
Langor, D.W. 1985. Ecology of the eastern larch beetle, Dendroctonus simplex LeConte (Coleoptera: Scolytidae) in Newfoundland. M.Sc. thesis, Biology Department, Memorial University of Newfoundland, St. John's, Newfoundland. 197 pp.Google Scholar
Langor, D.W. 1987. Flight muscle changes in the eastern larch beetle, Dendroctonus simplex LeConte. Col. Bull. 41. In press.Google Scholar
Lucht, D.D., Frye, R.H., and Schmid, J.M.. 1974. Emergence and attack behavior of Dendroctonus adjunctus Blandford near Cloudcroft, New Mexico. Ann. ent. Soc. Am. 67: 610612.CrossRefGoogle Scholar
Otvos, I.S., and Moody, B.H.. 1978. The spruce budworm in Newfoundland: history, status and control. Can. For. Serv., Info. Rep. N-X-150. 76 pp. Newfoundland For. Cent., St. John's, Nfld.Google Scholar
Ring, R.A. 1977. Cold-hardiness of the bark beetle Scolytus ratzeburgi Jans. (Col., Scolytidae). Norw. J. Ent. 24: 125136.Google Scholar
Safranyik, L. 1976. Size- and sex-related emergence, and survival in cold storage, of mountain pine beetle adults. Can. Ent. 108: 209212.CrossRefGoogle Scholar
Safranyik, L., and Jahren, R.. 1970. Emergence patterns of the mountain pine beetle from lodgepole pine. Can. For. Serv., Bimonth. Res. Notes 26(2): 11, 19.Google Scholar
Schmid, J.M., and Frye, R.H.. 1977. Spruce beetle in the Rockies. U.S.D.A. For. Serv., Gen. Tech. Rep. RM-49. 38 pp. Rocky Mountain Res. Stn., Fort Collins, CO.Google Scholar
Simpson, L.J. 1929. The biology of Canadian bark beetles: the seasonal life history of Dendroctonus simplex LeC. Can. Ent. 61: 274279.CrossRefGoogle Scholar
Sōmme, L. 1964. Effects of glycerol on cold hardiness in insects. Can. J. Zool. 42: 87101.CrossRefGoogle Scholar
Stark, R.W. 1982. Generalized ecology and life history of bark beetles. pp. 21–45 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology. University of Texas Press, Austin. 527 pp.Google Scholar
Swaine, J.M. 1911. Some insects of larch. Annu. Rep. ent. Soc. Ont. 41: 8188.Google Scholar
Watson, J.A. 1971. Survival and fecundity of Dendroctonus ponderosae (Coleoptera: Scolytidae) after laboratory storage. Can. Ent. 103: 13811385.CrossRefGoogle Scholar
Werner, R.A. 1978. Overwinter survival of spear-marked black moth, Rheumaptera hastata (Lepidoptera: Geometridae), pupae in interior Alaska. Can. Ent. 110: 877882.CrossRefGoogle Scholar
Werner, R.A. 1986. The eastern larch beetle in Alaska. U.S.D.A. For. Serv., Res. Paper PNW-357. 13 pp. Pacific Northwest Res. Stn., Portland, OR.Google Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Memoirs 6. Brigham Young University, Provo, UT. 1359 pp.Google Scholar
Wright, L.C., Berryman, A.A., and Wickman, B.E.. 1984. Abundance of the fir engraver, Scolytus ventralis, and the Douglas-fir beetle, Dendroctonus pseudotsugae, following tree defoliation by the Douglas-fir tussock moth, Orgyia pseudotsugata. Can. Ent. 116: 293305.CrossRefGoogle Scholar