Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-27T00:39:23.313Z Has data issue: false hasContentIssue false

THE EFFECTS OF APPLICATION RATE AND SPRAY VOLUME ON EFFICACY OF TWO FORMULATIONS OF BACILLUS THURINGIENSIS BERLINER VAR. KURSTAKI AGAINST CHORISTONEURA ROSACEANA (HARRIS) (LEPIDOPTERA: TORTRICIDAE) ON RASPBERRIES

Published online by Cambridge University Press:  31 May 2012

S.Y. Li
Affiliation:
Pacific Agriculture Research Centre, Agriculture and Agri-Food Canada, 6660 NW Marine Drive, Vancouver, British Columbia, Canada V6T 1X2
S.M. Fitzpatrick
Affiliation:
Pacific Agriculture Research Centre, Agriculture and Agri-Food Canada, 6660 NW Marine Drive, Vancouver, British Columbia, Canada V6T 1X2

Abstract

The relative toxicities of two formulations (Dipel WP and Foray 48B) of Bacillus thuringiensis Berliner var. kurstaki to the obliquebanded leafroller, Choristoneura rosaceana (Harris), were determined in the laboratory. The effects of application rate (BIU per hectare) and spray volume (litres per hectare) on the efficacy of Dipel WP and Foray 48B against C. rosaceana were determined in raspberry fields. Mortality of C. rosaceana increased with application rate, and decreased with an increase in spray volume. Bacillus thuringiensis exhibited significantly longer residual activity al higher application rates and at lower spray volumes. The half-life (time at which 50% of original activity remains) of B. thuringiensis ranged from 2.45 to 6.68 days, depending upon application rate and spray volume. Laboratory and field studies indicate that Dipel WP and Foray 48B are highly and equally effective in killing larvae of C. rosaceana.

Résumé

La toxicité relative de deux produits (Dipel WP et Foray 48B) à base de Bacillus thuringiensis var. kurstaki sur la Tordeuse à bandes obliques, Choristoneura rosaceana (Harris), a été évaluée en laboratoire. Les effets de la dose (en BIU par hectare) et du volume appliqué (litres par hectare) sur l’efficacité des deux produits dans la lutte contre cette tordeuse ont été déterminés dans des cultures de framboisiers. La mortalité des tordeuses augmente en fonction de la dose et diminue lorsqu’ augmente le volume vaporisé. Bacillus thuringiensis a une activité résiduelle significativement plus longue à des doses plus fortes et des volumes moins élevés. La demi-vie (temps que persiste 50% de l’activité initiale) de B. thuringiensis se situe entre 2,45 et 6,68 jours, selon la dose et le volume appliqués. Les expériences en laboratoire et en nature ont démontré que les deux produits, Dipel WP et Foray 48B, sont tout aussi efficaces l’un que l’autre dans la lutte contre les larves de C. rosaceana.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abacus Concepts. 1989. SuperANOVA. Abacus Concepts, Berkeley, CA.Google Scholar
Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Ali, A., and Young, S.Y.. 1993 a. Bacillus thuringiensis var. kurstaki activity against larvae of Heliothis zea and Heliothis virescens (Lepidoptera: Noctuidae) on cotton. Journal of Economic Entomology 86: 10641068.CrossRefGoogle Scholar
Ali, A., and Young, S.Y.. 1993 b. Effects of rate and spray volume of Bacillus thuringiensis var. kurstaki on activity against Heliothis virescens (Lepidoptera: Noctuidae) and persistence in cotton terminals. Journal of Economic Entomology 86: 735738.CrossRefGoogle Scholar
Anonymous. 1994. Berry Production Guide for Commercial Growers 1994–95. British Columbia Ministry of Agriculture, Fisheries and Food. 90 pp.Google Scholar
Beckwith, R.C., and Stelzer, M.J.. 1987. Persistence of Bacillus thuringiensis in two formulations applied by helicopter against the western spruce budworm (Lepidoptera: Tortricidae) in North central Oregon. Journal of Economic Entomology 80: 204207.CrossRefGoogle Scholar
Beegle, C.C., Dulmage, H.T., Wolfenbarger, D.A., and Martinez, E.. 1981. Persistence of Bacillus thuringiensis Berliner insecticidal activity on cotton foliage. Environmental Entomology 10: 400401.CrossRefGoogle Scholar
Fast, P.G., and Régnière, J.. 1984. Effect of exposure time to Bacillus thuringiensis on mortality and recovery of the spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist 116: 123130.CrossRefGoogle Scholar
Ignoffo, C.M., Hostetter, D.L., and Pinnell, R.E.. 1974. Stability of Bacillus thuringiensis and Baculovirus heliothis on soybean foliage. Environmental Entomology 3: 117119.CrossRefGoogle Scholar
Leong, K.L.H., Cano, R.J., and Kubinski, A.M.. 1980. Factors affecting Bacillus thuringiensis total field persistence. Environmental Entomology 9: 593599.CrossRefGoogle Scholar
LeOra Software. 1994. Polo-PC A User's Guide to Probit or Logit Analysis. Berkeley, CA.Google Scholar
Lewis, F.B., Dubois, N.R., Grimble, D., Metterhouse, W., and Quimby, J.. 1974. Gypsy moth: Efficacy of aerially-applied Bacillus thuringiensis. Journal of Economic Entomology 67: 351354.CrossRefGoogle ScholarPubMed
Li, S.Y., Fitzpatrick, S.M., and Isman, M.B.. 1995 a. Susceptibility of different instars of the obliquebanded leafroller (Lepidoptera: Tortricidae) to Bacillus thuringiensis var. kurstaki. Journal of Economic Entomology 88: 610614.CrossRefGoogle Scholar
Li, S.Y., Fitzpatrick, S.M., and Isman, M.B.. 1995 b. Effect of temperature on toxicity of Bacillus thuringiensis to the obliquebanded leafroller (Lepidoptera: Tortricidae). The Canadian Entomologist 127: 271273.CrossRefGoogle Scholar
McLeod, P.J., Yearian, W.C., and Young, S.Y.. 1983. Persistence of Bacillus thuringiensis on second-year loblolly pine cones. Environmental Entomology 12: 11901192.CrossRefGoogle Scholar
Reardon, R.C., and Haissing, K.. 1984. Efficacy and field persistence of Bacillus thuringiensis after ground application to balsam fir and white spruce in Wisconsin. The Canadian Entomologist 116: 153158.CrossRefGoogle Scholar
Robertson, J.L., and Preisler, H.K.. 1992. Pesticide Bioassays with Arthropods. CRC Press, Boca Raton, FL. 127 pp. van Frankenhuyzen, K., and C. Nystrom. 1989. Residual toxicity of a high-potency formulation of Bacillus thuringiensis to spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology 82: 868872.Google Scholar