Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-06T01:04:19.150Z Has data issue: false hasContentIssue false

The effect of sex and maturation on cuticular semiochemicals in Monochamus scutellatus (Coleoptera: Cerambycidae)

Published online by Cambridge University Press:  23 November 2012

Bekka S. Brodie*
Affiliation:
College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, United States of America; and Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
Jacob D. Wickham
Affiliation:
College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, United States of America; and Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P.R. China
Stephen A. Teale
Affiliation:
College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, United States of America
*
1Corresponding author (e-mail: bbrodie@sfu.ca).

Abstract

Contact pheromones are a subset of a complex mixture of hydrocarbons secreted on the cuticle and play an important role in the mating behaviour of several cerambycid species (Coleoptera: Cerambycidae). In this study, we investigated the relationship between maturation (newly eclosed and sexually mature) adult Monochamus scutellatus (Say) beetles and sex and the composition of the cuticular hydrocarbon blend to determine if this information is encoded in the blend and potentially available for communication purposes. Whole-body extracts of unfed females, and both mature females and males were analysed by gas chromatography mass spectrometry to identify and quantify the components of the cuticular hydrocarbons. There were no unique compounds present in any of the three groups, but discriminant analysis indicated that the relative proportions of the cuticular hydrocarbon components were unique for each group.

Résumé

Les phéromones de contact sont un sous-ensemble du mélange complexe d'hydrocarbures sécrétés par la cuticule; elles jouent un role important dans le comportement sexuel de plusieurs espèces de cérambycidés. Dans cette étude, nous explorons la relation entre la maturité (récemment éclos ou sexuellement matures), le sexe et la composition du mélange d'hydrocarbones cuticulaires afin de déterminer si ces informations sont contenues dans le mélange et pourraient être utilisées comme élément de communication. Des extractions du corps de femelles non nourries, et de femelles et de mâles matures ont été analysées par CPG/SM afin d'identifier et de quantifier les composants des hydrocarbones cuticulaires. Il n'y avait aucun élément unique à chacun des trois groupes, mais une analyse discriminante montre que la proportion relative des différents hydrocarbones cuticulaires était spécifique à chaque groupe.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchinson, J. 1986. The statistical analysis of compositional data: monographs in statistics and applied probability. Chapman and Hall, London, New York, United States of America.CrossRefGoogle Scholar
Allison, J.D., Borden, J.H., Mcintosh, R.L., DeGroot, P., Gries, R. 2001. Kairomonal response by four Monochamus species (Coleoptera: Cerambycidae) to bark beetle pheromones. Journal of Chemical Ecology, 27: 633646.CrossRefGoogle ScholarPubMed
Barbour, J.D., Lacey, E.S., Hanks, L.M. 2007. Cuticular hydrocarbons mediate mate recognition in a species of longhorned beetle (Coleoptera: Cerambycidae) of the primitive subfamily Prioninae. Annals of the Entomological Society of America, 100: 333338.CrossRefGoogle Scholar
Blomquist, G.J., Tillman-Wal, J.A., Guo, L., Quilici, D.R., Gu, P., Schal, C. 1996. Hydrocarbon and hydrocarbon derived sex pheromones in insects: biochemistry and endocrine regulation. University of Nebraska Press, Lincoln, Nebraska, United States of America.Google Scholar
Cram, M.Hanson, J. 2004. How to identify and manage pine wilt disease and treat wood products infested by the pinewood nematodes [online]. Available from http://www.na.fs.fed.us/spfo/pubs/howtos/ht_pinewilt/pinewilt.htm [accessed 24 September 2012].Google Scholar
Cuvillier-Hot, V., Cobb, M., Malosse, C., Peeters, C. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonese, a queenless ant. Journal of Insect Physiology, 47: 485493.CrossRefGoogle Scholar
D'Ettorre, P., Wenseleers, T., Dawson, J., Hutchinson, S., Boswell, T., Ratnieks, F.L.W. 2006. Wax combs mediate nestmate recognition by guard honeybees. Animal Behavior, 71: 773779.CrossRefGoogle Scholar
Dillwith, J.W., Adams, T.T., Blomquist, G.J. 1983. Correlation of housefly sex-pheromone production with ovarian development. Journal of Insect Physiology, 29: 377386.CrossRefGoogle Scholar
Edney, E.B. 1967. Water balance in desert arthropods. Science, 156: 10591066.CrossRefGoogle ScholarPubMed
Gibbs, A.G. 1998. Water-proofing properties of cuticular lipids. American Zoologist, 38: 471482.CrossRefGoogle Scholar
Ginzel, M.D., Blomquist, G.J., Millar, J.G., Hanks, L.M. 2003a. Role of contact pheromones in mate recognition in Xylotrechus colonus. Journal of Chemical Ecology, 29: 533545.CrossRefGoogle ScholarPubMed
Ginzel, M.D.Hanks, L.M. 2003. Contact pheromones as mate recognition cues of four species of longhorned beetles (Coleoptera: Cerambycidae). Journal of Insect Behavior, 16: 181187.CrossRefGoogle Scholar
Ginzel, M.D., Millar, J.G., Hanks, L.M. 2003b. (z)-9-pentacosene-contact sex pheromone of the locust borer, Megacyllene robiniae. Chemoecology, 13: 135141.CrossRefGoogle Scholar
Gleason, M., Linit, M., Narjess, Z., Donald, P., Tisserat, N., Giesler, L. 2000. Pine wilt: a fatal disease of exotic pines in the Midwest [online]. Available from http://www.extension.iastate.edu/Publications/SUL9.pdf [accessed 24 September 2012].Google Scholar
Hanks, L.M. 1999. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annual Review of Entomology, 44: 483505.CrossRefGoogle ScholarPubMed
Hanks, L.M., Millar, J.G., Paine, T.D. 1996. Mating behavior of the eucalyptus longhorned borer (Coleoptera: Cerambycidae) and the adaptive significance of long ‘‘horns’’. Journal of Insect Behavior, 9: 383393.CrossRefGoogle Scholar
Howard, R.W.Blomquist, G.J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50: 371393.CrossRefGoogle ScholarPubMed
Jackson, L.L.Bartelt, R.J. 1986. Cuticular hydrocarbons of Drosophila virilis – comparison by age and sex. Insect Biochemistry, 16: 433439.CrossRefGoogle Scholar
Jackson, L.L.Blomquist, G.J. 1976. Insect waxes. In Chemistry and biochemistry of natural waxes. Edited by P.E. Kolatukudy. Elsevier, Amsterdam, The Netherlands. pp. 201233.Google Scholar
Lacey, E.S., Ginzel, M.D., Millar, J.G., Hanks, L.M. 2008. 7-Methylheptacosane is a major component of the contact sex pheromone of the cerambycid beetle Neoclytus acuminatus acuminatus. Physiological Entomology, 33: 209216.CrossRefGoogle Scholar
Linit, M.J. 1989. Temporal pattern of pinewood nematode exit from the insect vector Monochamus carolinensis. Journal of Nematology, 21: 105107.Google ScholarPubMed
Neville, A.C. 1975. Biology of the arthropod cuticle. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Panek, L.M., Gamboa, G.J., Espelie, K.E. 2001. The effect of a wasp's age on its cuticular hydrocarbon profile and its tolerance by nestmate and non-nestmate conspecifics (Polistes fuscatus, Hymenoptera: Vespidae). Ethology, 107: 5563.CrossRefGoogle Scholar
Peeters, C., Monnin, T., Malosse, C. 1999. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proceedings of the Royal Society London Series B-Biological Sciences, 266: 13231327.CrossRefGoogle Scholar
Rose, A.H. 1957. Some notes on the biology of Monochamus scutellatus (Say) (Coleoptera: Cerambycidae). The Canadian Entomology, 89: 547553.CrossRefGoogle Scholar
Simmons, L.W., Llorens, T., Schinzig, M., Hosken, D., Craig, M. 1994. Sperm competition selects for male mate choice and protandry in the bush-cricket, Requena verticalis (Orthoptera, Tettigoniidae). Animal Behavior, 47: 117122.CrossRefGoogle Scholar
Spikes, A.E., Paschen, M.A., Millar, J.G., Moreira, J.A., Hamel, P.B., Schiff, N.M., et al. 2010. First contact pheromone identified for a longhorned beetle (Coleoptera: Cerambycidae) in the subfamily Prioninae. Journal of Chemical Ecology, 36: 943954.CrossRefGoogle ScholarPubMed
Steiner, S., Peschke, K., Francke, W., Muller, J.K. 2007. The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle. Proceedings of the Royal Society B – Biological Sciences, 274: 22112220.CrossRefGoogle Scholar
Thomas, M.L. 2011. Detection of female mating status using chemical signals and cues. Biological Review, 86: 114.CrossRefGoogle ScholarPubMed
Vallentgoed, J. 1991. Some important woodborers related to export restrictions. Forest Pest Leaflet, Pacific Forestry Centre, 74: 114.Google Scholar
Wakonigg, G., Eveleigh, L., Arnold, G., Crailsheim, K. 2000. Cuticular hydrocarbon profiles reveal age-related changes in honey bee drones (Apis mellifera carnica). Journal of Apicultural Research, 39: 137141.CrossRefGoogle Scholar
Wang, Q. 1998. Evidence for a contact female sex pheromone in Anoplophora chinensis (Forster) (Coleoptera: Cerambycidae: Lamiinae). Coleopterists Bulletin, 52: 363368.Google Scholar
Wyatt, T.D. 2003. Pheromones and animal behavior: communication by smell and taste. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Zar, J.H. 1996. Biostatistical analysis, 3rd ed. Prentice Hall, Saddle River, New Jersey, United States of America.Google Scholar
Zhang, A.J., Oliver, J.E., Chauhan, K., Zhao, B.G., Xia, L.Q., Xu, Z.C. 2003. Evidence for contact sex recognition pheromone of the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). Naturwissenschaften, 90: 410413.CrossRefGoogle ScholarPubMed