Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-04T05:47:16.018Z Has data issue: false hasContentIssue false

Early springtime water absorption by overwintering eggs of Mindarus abietinus (Hemiptera: Aphididae): possible implications for cold hardiness and diapause termination

Published online by Cambridge University Press:  05 January 2018

Jean-François Doherty
Affiliation:
Département de biologie, Université Laval, Ville de Québec, Québec, G1V 0A6, Canada
Jean-Frédéric Guay
Affiliation:
Département de biologie, Université Laval, Ville de Québec, Québec, G1V 0A6, Canada
Conrad Cloutier*
Affiliation:
Département de biologie, Université Laval, Ville de Québec, Québec, G1V 0A6, Canada
*
1Corresponding author (e-mail: conrad.cloutier@bio.ulaval.ca)

Abstract

Eggs of the balsam twig aphid Mindarus abietinus Koch (Hemiptera: Aphididae) overwinter for several months in obligate diapause, which terminates in early springtime when embryogenesis of the stem mother supposedly resumes. Important shape and size changes were observed on eggs collected at regular intervals during late winter and early spring. These observations led to the visual classification of eggs into three shape categories: flat eggs (C1), semi-flat eggs (C2), and round and turgid eggs (C3). Egg mass significantly increased with time during late winter and early spring, which coincided with the noticeable changes in morphological composition (i.e., from C2 to C3). Our observations suggest that free water surrounding eggs on fir (Abies balsamea (Linnaeus) Miller; Pinaceae) shoots is essential for M. abietinus normal embryonic development during snowmelt. Also, reduced egg water content during winter could modify its supercooling point, and the renewed availability of water in springtime may signal diapause termination and/or initiate embryogenesis of the stem mother.

Résumé

Les œufs hivernants du puceron des pousses du sapin Mindarus abietinus Koch (Hemiptera : Aphididae) passent plusieurs mois en diapause obligatoire, qui se termine tôt au printemps, alors que l’embryogenèse de la fondatrice recommence. Des changements morphologiques importants des œufs échantillonnés à différentes dates ont été observés à la fin de l’hiver et au début du printemps, permettant leur classification en trois catégories : les œufs aplatis (C1), les œufs semi-aplatis (C2) et les œufs ronds et turgides (C3). En mesurant régulièrement la masse fraîche d’œufs hivernants durant leur longue période de dormance, il a été possible d’observer une augmentation progressive de la masse durant la transition de l’hiver au printemps, coïncidant avec le changement de la forme des œufs, de la catégorie C2 vers C3. Nos observations suggèrent que l’eau environnante sur les pousses de sapin (Abies balsamea (Linnaeus) Miller ; Pinaceae) est essentielle au développement des œufs de M. abietinus tôt au printemps, lors de la fonte des neiges. Elles suggèrent aussi l’hypothèse que le point de surfusion des œufs durant l’hiver est lié à leur teneur en eau, et que l’eau environnante à la fin de l’hiver est un signal de terminaison de la diapause obligatoire et de reprise de l’embryogenèse de la fondatrice.

Type
Physiology, Biochemistry, Development, & Genetics—Note
Copyright
© Entomological Society of Canada 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Brent Sinclair

References

Bethke, J.A. and Redak, R.A. 1996. Temperature and moisture effects on the success of egg hatch in Trirhabda geminata (Coleoptera: Chrysomelidae). Ecology and Population Biology, 89: 661666.Google Scholar
Danks, H.V. 2000. Dehydration in dormant insects. Journal of Insect Physiology, 46: 837852.CrossRefGoogle ScholarPubMed
Danks, H.V. 2007. The elements of seasonal adaptations in insects. The Canadian Entomologist, 139: 144.Google Scholar
Deland, J.P., Berthiaume, R., Hébert, C., and Cloutier, C. 1998. Programme alternatif de protection du sapin de Noël contre le puceron des pousses dans le contexte d’une saine gestion des ressources environnementales. Final report, Ministère de l’environnement et de la faune, Ville de Québec, Québec, Canada.Google Scholar
Denlinger, D.L. 2002. Regulation of diapause. Annual Review of Entomology, 47: 93122.Google Scholar
Doherty, J.-F., Guay, J.-F., and Cloutier, C. 2017. Temperature-manipulated dynamics and phenology of Mindarus abietinus (Hemiptera: Aphididae) in commercial Christmas tree plantations in Québec, Canada. The Canadian Entomologist, 149: 801812.Google Scholar
Fondren, K.M. and McCullough, D.G. 2003. Phenology and density of balsam twig aphid, Mindarus abietinus Koch (Homoptera: Aphididae) in relation to bud break, shoot damage, and value of fir Christmas trees. Journal of Economic Entomology, 96: 17601769.Google Scholar
Gehrken, U. and Sømme, L. 1987. Increased cold hardiness in eggs of Arcynopteryx compacta (Plecoptera) by dehydration. Journal of Insect Physiology, 33: 987991.Google Scholar
James, B.D. and Luff, M.L. 1982. Cold-hardiness and development of eggs of Rhopalosiphum insertum . Ecological Entomology, 7: 277282.Google Scholar
Leather, S.R., Walters, K.F.A., and Bale, J.S. 1993. The ecology of insect overwintering. Cambridge University Press, New York, New York, United States of America.Google Scholar
Lee, R.E. 1991. Principles of insect low temperature tolerance. In Insects at low temperature. Edited by R.E. Lee and D.L. Denlinger. Chapman and Hall, London, United Kingdom. Pp. 1746.CrossRefGoogle Scholar
Moriarty, F. 1969. Egg diapause and water absorption in the grasshopper Chorthippus brunneus . Journal of Insect Physiology, 15: 20692074.Google Scholar
Nahrung, H.F. and Merritt, D.J. 1999. Moisture is required for the termination of egg diapause in the chrysomelid beetle, Homichloda barkeri. Entomologia Experimentalis et Applicata, 93: 201207.CrossRefGoogle Scholar
Niikawa, K. and Takeda, M. 1996. Water absorption by diapause and nondiapause eggs in two Velarifictorus species (Orthoptera: Gryllidae). Applied Entomology and Zoology, 31: 105110.CrossRefGoogle Scholar
Qi, X.-L., Wang, X.-H., Xu, H.-F., and Kang, L. 2007. Influence of soil moisture on egg cold hardiness in the migratory locust Locusta migratoria (Orthoptera: Acrididae). Physiological Entomology, 32: 219224.Google Scholar
Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comparative Biochemistry and Physiology, 73: 519543.CrossRefGoogle Scholar
Turnock, W.J. and Fields, P.G. 2005. Winter climates and coldhardiness in terrestrial insects. European Journal of Entomology, 102: 561576.CrossRefGoogle Scholar
Yoder, J.A. and Denlinger, D.L. 1992. Water vapour uptake by diapausing eggs of a tropical walking stick. Physiological Entomology, 17: 97103.CrossRefGoogle Scholar
Zachariassen, K.E. 1985. Physiology of cold tolerance in insects. American Journal of Physiology, 65: 799832.Google Scholar