Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T01:14:51.952Z Has data issue: false hasContentIssue false

DRIFT OF AQUATIC INSECTS FOLLOWING METHOXYCHLOR TREATMENT OF THE SASKATCHEWAN RIVER SYSTEM

Published online by Cambridge University Press:  31 May 2012

Lloyd M. Dosdall
Affiliation:
Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0
Dennis M. Lehmkuhl
Affiliation:
Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0

Abstract

Drift of aquatic insects was compared at three sites downstream (21, 38, and 107 km) from methoxychlor treatment (0.3 mg. L−1 for 15 min) of the North Saskatchewan River, relative to an upstream untreated site. Species of Diptera (Simuliidae), Ephemeroptera (Baetidae, Heptageniidae, Ephemerellidae, Ametropodidae, Metretopodidae, and Tricorythidae), Plecoptera (Perlodidae and Chloroperlidae), Trichoptera (Hydropsychidae and Hydroptilidae), and Hemiptera (Corixidae) were studied. Drift responses differed depending on species, distance from the injection site, and time after methoxychlor injection. Exposure to methoxychlor initiated catastrophic drift of aquatic insects at all downstream sites. Of 22 species compared before treatment and following methoxychlor injection, post-treatment drift of 17, 21, and 13 species significantly exceeded pre-treatment drift at the km 21, 38, and 107 sites, respectively. Methoxychlor treatment initiated or increased drift of several normally non-drifting species. Similar drift patterns were observed among closely related taxa during the catastrophic phase. For all species studied, comparisons of 24-h drift densities between days preceding and following the catastrophic phase of treatment indicated significant post-treatment drift density increases or decreases at one or more of the downstream sites, but not at the untreated site. Species were classified according to their drift responses to methoxychlor treatment. Factors that may have caused different drift responses among species are discussed.

Résumé

On a comparé la dérive d’insectes aquatiques à trois sites en aval du site d’application (21, 38 et 107 km) d’un traitement au methoxychlor (0,3 mg. L−1 pendant 15 min) dans la rivière North Saskatchewan, à celle d’un site témoin situé en amont. On a étudié des espèces de Diptera (Simuliidae), d’Ephemeroptera (Baetidae, Heptageniidae, Ephemerellidae, Ametropodidae, Metretopodidae et Tricorythidae), de Plecoptera (Perlodidae et Chloroperlidae), de Trichoptera (Hydropsychidae et Hydroptilidae) et d’Hemiptera (Corixidae). La dérive a varié dépendant de l’espèce, de la distance par rapport au site traité et du temps après le traitement. Le traitement au méthoxychlor a provoqué une dérive catastrophique des insectes aquatiques à tous les sites situés en aval. Parmi 22 espèces suivies avant et après le traitement, la dérive post-traitement excédait la dérive pré-traitement pour 17, 21 et 13 espèces, aux km 21, 38 et 107, respectivement. Le traitement a déclenché ou augmenté la dérive de plusieurs espèces qui, normalement, ne dérivent que peu ou pas. Dans patrons de dérive similaires ont été observés chez des taxons étroitement apparentés durant la phase catastrophique. Pour toutes les espèces étudiées, la comparaison de la densité de dérive pendant 24 h entre des jours précédant et suivant la phase catastrophique a indiqué une augmentation ou une diminution significative de la densité de dérive à un ou plusieurs des sites situés en aval, mais pas au site témoin. Les espèces ont pu être classifiées selon leur réaction de dérive au traitement. On discute des facteurs pouvant expliquer la réaction différentielle de dérive des espèces.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J.D., and Russek, E.. 1985. The quantification of stream drift. Can. J. Fish. Aquat. Sci. 42: 210215.CrossRefGoogle Scholar
Anderson, R.L., and DeFoe, D.L.. 1980. Toxicity and bioaccumulation of endrin and methoxychlor in aquatic invertebrates and fish. Environ. Pollut. 22: 111121.CrossRefGoogle Scholar
Burdick, G.E., Dean, H.J., Harris, E.J., Skea, J., Frisa, C., and Sweeney, C.. 1968. Methoxychlor as a blackfly larvicide, persistence of its residues in fish and its effect on stream arthropods. N.Y. Fish Game J. 15: 120142.Google Scholar
Burton, W., and Flannagan, J.F.. 1976. An improved river drift sampler. Can. Fish. Mar. Serv. Res. Dev. Tech. Rep. 641. 8 pp.Google Scholar
Clifford, H.F., and Barton, D.R.. 1979. Observations on the biology of Ametropus neavei (Ephemeroptera: Ametropodidae) from a large river in northern Alberta, Canada. Can. Ent. 111: 855858.CrossRefGoogle Scholar
Cuffney, T.F., Wallace, J.B., and Webster, J.R.. 1984. Pesticide manipulation of a headwater stream: invertebrate responses and their significance for ecosystem processes. Freshwat. Invert. Biol. 3: 153171.CrossRefGoogle Scholar
Dimond, J.B. 1967. Evidence that drift of stream benthos is density related. Ecology 48: 855857.CrossRefGoogle ScholarPubMed
Dosdall, L.M. 1987. The impact of methoxychlor on aquatic insects in the Saskatchewan River system. Ph.D. thesis, Univ. Saskatchewan, Saskatoon, Saskatchewan. 267 pp.Google Scholar
Dosdall, L.M., and Lehmkuhl, D.M.. 1989. The impact of methoxychlor treatment of the Saskatchewan River system on artificial substrate populations of aquatic insects. Environ. Pollut. 60: 209222.CrossRefGoogle ScholarPubMed
Edmunds, G.F. Jr., 1984. Ephemeroptera. pp. 94125in Merritt, R.W., and Cummins, K.W. (Eds.), An Introduction to the Aquatic Insects of North America, 2nd ed. Kendall/Hunt, Dubuque, Iowa.Google Scholar
Environment Canada. 1985. Surface water data Saskatchewan 1984. Inland Waters Directorate, Water Res. Branch, Water Surv. Canada. 202 pp.Google Scholar
Flannagan, J.F., Townsend, B.E., DeMarch, B.G.E., Friesen, M.K., and Leonhard, S.H.. 1979. The effects of an experimental injection of methoxychlor on aquatic invertebrates: accumulation, standing crop, and drift. Can. Ent. 111: 7389.CrossRefGoogle Scholar
Fredeen, F.J.H. 1969. A new procedure allowing replicated miniature larvicide tests in a large river. Can. Ent. 101: 713725.CrossRefGoogle Scholar
Fredeen, F.J.H. 1975. Effects of a single injection of methoxychlor black-fly larvicide on insect larvae in a 161 km (100 mile) section of the North Saskatchewan River. Can. Ent. 107: 807817.CrossRefGoogle Scholar
Fredeen, F.J.H. 1977. Black fly control and environmental quality with reference to chemical larviciding in western Canada. Quaest. Ent. 13: 321325.Google Scholar
Fredeen, F.J.H., Arnason, A.P., Berck, B., and Rempel, J.G.. 1953. Further experiments with DDT in the control of Simulium arcticum Mall. in the North and South Saskatchewan Rivers. Can. J. Agric. Sci. 33: 379393.Google Scholar
Harper, P.P., and Stewart, K.W.. 1984. Plecoptera. pp. 182230in Merritt, R.W., and Cummins, K.W. (Eds.), An Introduction to the Aquatic Insects of North America, 2nd ed. Kendall/Hunt, Dubuque, Iowa.Google Scholar
Lehmkuhl, D.M. 1982. Report on the impact of methoxychlor on non-target organisms in the Saskatchewan River. Appendix III, 165 pp. in Sawchyn, W.W., The Impact of Methoxychlor as a Blackfly Larvicide in the Saskatchewan River. Sask. Res. Coun. Tech. Rep. C-805-19-E-82.Google Scholar
Merna, J.W., and Eisele, P.J.. 1973. The effects of methoxychlor on aquatic biota. U.S. Environ. Prot. Agency Rep. No. EPA R3-73-046. 59 pp.Google Scholar
Muirhead-Thomson, R.C. 1971. Pesticides and Freshwater Fauna. Academic Press, New York, NY. 248 pp.Google Scholar
Sanders, H.O., and Cope, O.B.. 1968. The relative toxicities of several pesticides to naiads of three species of stoneflies. Limnol. Oceanogr. 13: 112117.CrossRefGoogle Scholar
Sawchyn, W.W. 1982. The impact of methoxychlor as a blackfly larvicide in the Saskatchewan River. Sask. Res. Coun. Tech. Rep. C-805-19-E-82. 242 pp.Google Scholar
Sebastien, R.J., Brust, R.A., and Rosenberg, D.M.. 1989. Impact of methoxychlor on selected nontarget organisms in a riffle of the Souris River, Manitoba. Can. J. Fish. Aquat. Sci. 46: 10471061.CrossRefGoogle Scholar
Wallace, R.R., and Hynes, H.B.N.. 1975. The catastrophic drift of stream insects after treatment with methoxychlor (1,1,1-trichloro-2, 2-bis (p-methoxyphenyl) ethane). Environ. Pollut. 8: 255268.CrossRefGoogle Scholar
Wallace, R.R., and Hynes, H.B.N.. 1981. The effect of chemical treatments against blackfly larvae on the fauna of running waters. pp. 237258in Laird, M. (Ed.), Blackflies: The Future for Biological Methods in Integrated Control. Academic Press, London.Google Scholar
Wallace, R.R., Hynes, H.B.N., and Merritt, W.F.. 1976. Laboratory and field experiments with methoxychlor as a larvicide for Simuliidae (Diptera). Environ. Pollut. 10: 251269.CrossRefGoogle Scholar
Wallace, R.R., Merritt, W.F., and West, A.S.. 1973. Dispersion and transport of Rhodamine B dye and methoxychlor in running water: a preliminary study. Environ. Pollut. 5: 1118.CrossRefGoogle Scholar
Waters, T.F. 1965. Interpretation of invertebrate drift in streams. Ecology 46: 327334.CrossRefGoogle Scholar
Waters, T.F. 1972. The drift of stream insects. A. Rev. Ent. 17: 253272.CrossRefGoogle Scholar
Wrona, F.J., Culp, J.M., and Davies, R.W.. 1982. Macroinvertebrate subsampling: a simplified apparatus and approach. Can. J. Fish. Aquat. Sci. 39: 10511054CrossRefGoogle Scholar