Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T14:25:53.166Z Has data issue: false hasContentIssue false

Dispersal of adult western flower thrips (Thysanoptera: Thripidae) in greenhouse crops

Published online by Cambridge University Press:  02 April 2012

Marc Rhainds
Affiliation:
Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Centre, Harrow, Ontario, Canada N0R 1G0
Les Shipp*
Affiliation:
Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Centre, Harrow, Ontario, Canada N0R 1G0
*
2 Corresponding author.

Abstract

This study characterized the spatial distribution of adult western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), released at the centres of greenhouses stocked with either cucumber (Cucumis sativus L. (Cucurbitaceae)) or chrysanthemum (Dendranthema grandiflora (Tzelev) (Asteraceae)) plants. Experiments conducted using either adults marked with fluorescent powder or unmarked adults revealed that the density of females per plant decreased as an inverse function of the distance from the release point. Inverse regression models with steep decreases in density over small distances may commonly describe the dispersal behaviour of insects that have limited flight capacity and settle on the first plants that they encounter. Females were found on plants farther from the release point as time elapsed, dispersing throughout the greenhouse at an average rate of 0.18 to 0.29 m per day. Distinct sex ratios for adults captured on sticky cards or sampled on host plants suggested that males and females exhibit different dispersal behaviours. The spatial distribution of F. occidentalis varied across generations, with females exhibiting a lower level of aggregation around the release site than their nymphal progeny. The average rate of spread between consecutive generations fluctuated between 0.05 and 0.17 m per day. Considering the limited dispersal of F. occidentalis, outbreaks may be effectively suppressed by applying insecticides or releasing natural enemies in relatively small concentric areas surrounding heavily infested plants, as well as near the edges of greenhouses.

Résumé

Notre étude caractérise la distribution spatiale de thrips des petits fruits adultes, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) relâchés au centre de serres contenant des plants de concombres (Cucumis sativus L. (Cucurbitaceae)) ou de chrysanthèmes (Dendranthema grandiflora (Tzelev) (Asteraceae)). Des expériences avec des adultes marqués de poudre fluorescente et d'adultes non marqués montrent que la densité des femelles par plant décroît en fonction inverse de la distance du point de libération. Des modèles de régression inverse qui montrent une forte décroissance de la densité en fonction de courtes distances servent couramment à décrire le comportement de dispersion chez les insectes qui ont une capacité de vol limitée et qui se posent sur les premiers plants qu'ils rencontrent. Avec le temps, des femelles se retrouvent sur des plants de plus en plus éloignés du point de libération, ce qui indique un taux de dispersion moyen à l'intérieur de la serre de 0,18 à 0,29 m par jour. L'existence de rapports mâles: femelles distincts dans les échantillons d'adultes récoltés sur des cartons englués ou directement sur les plants indique que les mâles et les femelles ont des comportements de dispersion différents. La répartition spatiale de F. occidentalis varie d'une génération à l'autre, car les femelles ont un plus faible degré de contagion autour du point de libération que les larves de leur progéniture. Le taux moyen de dispersion entre les générations consécutives varie de 0,05 à 0,17 m par jour. Vu le pouvoir réduit de dispersion de F. occidentalis, les infestations peuvent être enrayées de manière efficace en répandant des insecticides ou en libérant des ennemis naturels sur des surfaces concentriques relativement petites autour des plants fortement infestés, de même que le long des parois des serres.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Broadbent, A.B., Allen, W.R., Foottit, R.G. 1987. The association of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) with greenhouse crops and the tomato spotted wilt virus in Ontario. The Canadian Entomologist 119: 501–3CrossRefGoogle Scholar
Cho, K., Lee, J.H., Park, J.J., Kim, J.K., Uhm, K.B. 2001. Analysis of spatial pattern of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse cucumbers using dispersion index and spatial autocorrelation. Applied Entomology and Zoology 36: 2532CrossRefGoogle Scholar
Cronin, J.T., Reeve, J.D., Wilkens, R., Turchin, P. 2000. The pattern and range of movement of a checkered beetle predator relative to its bark beetle prey. Oikos 90: 127138CrossRefGoogle Scholar
Cronin, J.T., Hyland, K., Abrahamson, W.G. 2001. The pattern, rate, and range of within-patch movement of a stem-galling fly. Ecological Entomology 26: 1624CrossRefGoogle Scholar
Doak, P. 2000. Population consequences of restricted dispersal for an insect herbivore in a subdivided habitat. Ecology 81: 1828–41CrossRefGoogle Scholar
Freeman, G.H. 1977. A model relating numbers of dispersing insects to distance and time. Journal of Applied Ecology 14: 477–87CrossRefGoogle Scholar
Gopinathan, K., Varatharajan, R., Ananthakrishnan, T.N. 1981. Incidence of Microcephalothrips abdominalis (Crawford) (Thysanoptera: Insecta) in relation to the pollination biology of the weed Ageratum conyzoides Linn. (Compositae). Proceedings of the Indian National Science Academy Part B Biological Sciences 47: 505–9Google Scholar
Groves, R.L., Walgenbach, J.F., Moyer, J.W., Kennedy, G.G. 2001. Overwintering of Frankliniella fusca (Thysanoptera: Thripidae) on winter annual weeds infected with Tomato spotted wilt virus and patterns of virus movement between susceptible weed hosts. Phytopathology 91: 891–9CrossRefGoogle ScholarPubMed
Hao, X., Shipp, J.L., Wang, K., Papadopoulos, A.P., Binns, M.R. 2002. Impact of western flower thrips on growth, photosynthesis and productivity of greenhouse cucumber. Scientia Horticulturae (Amsterdam) 92: 187203CrossRefGoogle Scholar
Harrison, S. 1994. Resources and dispersal as factors limiting a population of the tussock moth (Orgyia vetusta), a flightless defoliator. Oecologia 99: 2734CrossRefGoogle ScholarPubMed
Higgins, C.J. 1992. Western flower thrips (Thysanoptera: Thripidae) in greenhouses: population dynamics, distribution on plants, and associations with predators. Journal of Economic Entomology 85: 18911903CrossRefGoogle Scholar
Itô, Y., Miyashita, K. 1965. Studies on the dispersal of leaf- and planthoppers. III. An examination of the distance–dispersal rate curves. Japanese Journal of Ecology 15: 85–9Google Scholar
Kareiva, P.M. 1983. Local movement in herbivorous insects: applying a passive diffusion model to mark–re-capture field experiments. Oecologia 57: 322–7CrossRefGoogle ScholarPubMed
Kindvall, O. 1999. Dispersal in a metapopulation of the bush cricket, Metrioptera bicolour (Orthoptera: Tettigoniidae). Journal of Animal Ecology 68: 172–85CrossRefGoogle Scholar
Lewis, T. 1997. Flight and dispersal. pp 175–96 in Lewis, T. (Ed), Thrips as crop pests. Wallingford, United Kingdom: CAB InternationalCrossRefGoogle Scholar
Lewis, T., Mound, L.A., Nakahara, S., Childers, C.C. 1997. Major crops infested by thrips with main symptoms and predominant injurious species. pp 675701in Lewis, T. (Ed), Thrips as crop pests. Wallingford, United Kingdom: CAB InternationalCrossRefGoogle Scholar
McLeish, M.J., Perry, S.P., Gruber, D., Chapman, T.W. 2003. Dispersal patterns of an Australian gall-forming thrips and its host tree (Oncothrips tepperi and Acacia oswaldii). Ecological Entomology 28: 243–6CrossRefGoogle Scholar
Papadopoulos, A.P. 1994. Growing greenhouse seedless cucumbers in soil and in soilless media. Publication 1902/E. Ottawa, Ontario: Agriculture and Agri-Food CanadaGoogle Scholar
Parrella, M.P., Jones, V.P. 1987. Development of integrated pest management strategies in floricultural crops. Bulletin of the Entomological Society of America 33: 2834CrossRefGoogle Scholar
Rhainds, M., Shipp, L. 2003. Dispersal of adult western flower thrips (Thysanoptera: Thripidae) on chrysanthemum plants: impact of feeding-induced senescence of inflorescences. Environmental Entomology 32: 1056–65CrossRefGoogle Scholar
Rhainds, M., Gries, G., Saleh, A. 1998. Density and pupation site of apterous female bagworms, Metisa plana (Lepidoptera: Psychidae), influence the distribution of emergent larvae. The Canadian Entomologist 130: 603–13CrossRefGoogle Scholar
Robb, K.L. 1989. Analysis of Frankliniella occidentalis (Pergande) as a pest of floricultural crops in California greenhouses. Ph.D. thesis, University of California at Riverside, Riverside, CaliforniaGoogle Scholar
Roslin, T. 2000. Dung beetle movements at two spatial scales. Oikos 91: 323–35CrossRefGoogle Scholar
Shipp, J.L., Boland, G.J., Shaw, L.A. 1991. Integrated pest management of disease and arthropod pests of greenhouse vegetable crops in Ontario: current status and future possibilities. Canadian Journal of Plant Science 71: 887914CrossRefGoogle Scholar
Shipp, J.L., Wang, K., Binns, M.R. 2000. Economic injury levels for western flower thrips (Thysanoptera: Thripidae) on greenhouse cucumber. Journal of Economic Entomology 93: 1732–40CrossRefGoogle ScholarPubMed
Schöps, K. 2002. Local and regional dynamics of a specialist herbivore: overexploitation of a patchily distributed host plant. Oecologia 132: 256–63CrossRefGoogle ScholarPubMed
Svensson, B.W. 1998. Local dispersal and its life-history consequences in a rock pool population of a gyrinid beetle. Oikos 82: 111–22CrossRefGoogle Scholar
Taylor, R.A.J. 1978. The relationship between density and distance of dispersing insects. Ecological Entomology 3: 6370CrossRefGoogle Scholar
Taylor, L.R., Woiwod, I.P., Taylor, R.A.J. 1979. The migratory ambit of the hop aphid and its significance in aphid population dynamics. Journal of Animal Ecology 48: 955–72CrossRefGoogle Scholar
Teulon, D.A.J., Penman, D.R. 1996. Thrips (Thysanoptera) seasonal flight activity and infestation of ripe stonefruit in Canterbury, New Zealand. Journal of Economic Entomology 89: 722–34CrossRefGoogle Scholar
Tommasini, M.G., Maini, S. 1995. Frankliniella occidentialis and other thrips harmful to vegetable and ornamental crops in Europe. Wageningen Agricultural University Papers 95(1): 142Google Scholar
Yoder, . 2001. Pot mums. Leamington, Ontario: Yoder Brothers IncGoogle Scholar