Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T01:42:00.759Z Has data issue: false hasContentIssue false

Diapause and voltinism in western and 2-year-cycle spruce budworms (Lepidoptera: Tortricidae) and their hybrid progeny

Published online by Cambridge University Press:  02 April 2012

V.G. Nealis
Affiliation:
Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5 (e-mail: vnealis@nrcan.gc.ca)

Abstract

Breeding experiments and rearing under variable controlled conditions have revealed that western and 2-year-cycle spruce budworms (Choristoneura occidentalis Freeman and C. biennis Freeman, respectively) from British Columbia, Canada, and their hybrid progeny have the inherent capacity for a variable number of diapause events and hence voltinism. While all crosses have at least one diapause, variability in the relative frequency of a second diapause is determined by genetic traits modified by the photoperiod and, to a lesser extent, temperature experienced during the larval stages. Second diapause appears fixed in C. biennis but is facultative and most frequent at short photophases (12L:12D) in C. occidentalis. Hybrids and backcrosses had responses intermediate to the parental responses under all environmental conditions. The occurrence of a facultative third diapause in all crosses underlines the inherent capacity for flexibility in voltinism in these species. These results are discussed in the context of past, present, and future distributions of alternative life cycles in closely related species.

Résumé

Des expériences de reproduction et d'élevage dans diverses conditions contrôlées révèlent que les tordeuses occidentale et bisannuelle de l'épinette (respectivement Choristoneura occidentalis Freeman et C. biennis Freeman) de la Colombie-Britannique et leurs hybrides ont la capacité inhérente d'entrer un nombre variable de fois en diapause et donc de produire un nombre variable de générations dans un période donnée. Chaque hybride entre au moins une fois en diapause, et la variabilité sur le plan de la fréquence relative d'une deuxième diapause dépend de caractères génétiques modifiés par la photopériode et, dans une moindre mesure, par les conditions de température qui ont prévalu au cours des stades larvaires. Il semble que C. biennis entre toujours au moins deux fois en diapause, tandis que chez C. occidentalis, la deuxième diapause est facultative et se produit plus fréquemment lorsque les photopériodes sont courtes. Les hybrides et les produits de rétrocroisements ont donné des résultats intermédiaires par rapport à ceux de leurs parents et ce, dans toutes les conditions environnementales. La possibilité d'une troisième diapause facultative chez tous les hybrides met en valeur la capacité inhérente de flexibilité des deux espèces sur le plan du voltinisme. Ces résultats font l'objet d'une discussion dans le contexte des répartitions passées, présentes et future d'autres cycles de vie chez des espèces étroitement apparentées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agresti, A. 1996. An introduction to categorical data analysis. John Wiley & Sons, Inc., New York.Google Scholar
Campbell, I.M. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America. IV. Sexual isolation between three species. The Canadian Entomologist, 99: 482486.CrossRefGoogle Scholar
Dang, P.T. 1985. Key to adult males of coniferfeeding species of Choristoneura Lederer (Lepidoptera: Tortricidae) in Canada and Alaska. The Canadian Entomologist, 117: 15.CrossRefGoogle Scholar
Dang, P.T. 1992. Morphological study of male genitalia with phylogenetic inference of Choristoneura Lederer (Lepidoptera: Tortricidae). The Canadian Entomologist, 124: 748.CrossRefGoogle Scholar
Freeman, T.N. 1958. The Archipinae of North America (Lepidoptera: Tortricidae). The Canadian Entomologist, Suppl. 7.Google Scholar
Freeman, T.N. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America. I. Some new forms of Choristoneura allied to C. fumiferana. The Canadian Entomologist, 99: 449455.CrossRefGoogle Scholar
Furniss, R.L., and Carolin, V.M. 1977. Western forest insects. US Department of Agriculture Miscellaneous Publication No. 1339.CrossRefGoogle Scholar
Grisdale, D. 1970. An improved laboratory method for rearing large numbers of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 102: 11111117.CrossRefGoogle Scholar
Harvey, G.T. 1957. The occurrence and nature of diapause-free development in the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Canadian Journal of Zoology, 35: 549572.CrossRefGoogle Scholar
Harvey, G.T. 1961. Second diapause in spruce budworm in eastern Canada. The Canadian Entomologist, 93: 594602.CrossRefGoogle Scholar
Harvey, G.T. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America. V. Second diapause as a species character. The Canadian Entomologist, 99: 486503.CrossRefGoogle Scholar
Harvey, G.T. 1985. The taxonomy of the coniferophagous Choristoneura (Lepidoptera: Tortricidae): a review. In Proceedings of the CANUSA Spruce Budworms Research Symposium: Recent Advances in Spruce Budworms Research, Bangor, Maine, 16–20 September 1984. Edited by Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J.. Catalog No. Fo18–5/1984, Ministry of Supplies and Services Canada, Ottawa, Ontario. pp. 1648.Google Scholar
Harvey, G.T. 1996. Genetic relationships among Choristoneura species (Lepidoptera: Tortricidae) in North America as revealed by isozyme studies. The Canadian Entomologist, 128: 245262.CrossRefGoogle Scholar
Harvey, G.T. 1997. Interspecific crosses and fertile hybrids among the coniferophagous Choristoneura (Lepidoptera: Tortricidae). The Canadian Entomologist, 129: 519536.CrossRefGoogle Scholar
Lawrence, R.K., Mattson, W.J., and Haack, R.A. 1997. White spruce and the spruce budworm: defining the phenological window of susceptibility. The Canadian Entomologist, 129: 291318.CrossRefGoogle Scholar
Lyon, R.L., Richmond, C.E., Robertson, J.L., and Lucas, B.A. 1972. Rearing diapause and diapausefree western spruce budworm (Choristoneura occidentalis) (Lepidoptera: Tortricidae) on an artificial diet. The Canadian Entomologist, 104: 417426.CrossRefGoogle Scholar
Mathers, W.G. 1932. The spruce budworm in British Columbia. Forestry Chronicle, 8: 154157.CrossRefGoogle Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist, 97: 5862.CrossRefGoogle Scholar
Nealis, V.G., and Turnquist, R. 2003. Predicting defoliation by Choristoneura biennis (Lepidoptera: Tortricidae). The Canadian Entomologist, 135: 903907.CrossRefGoogle Scholar
Powell, J.A., and De Benedictis, J.A. 1995. Evolutionary interpretation, taxonomy, and nomenclature. In Biosystematic studies of conifer-feeding Choristoneura (Lepidoptera: Tortricidae) in the western United States. Edited by Powell, J.A.. University of California Publications in Entomology, Vol. 115, Berkeley, California. pp. 218575.Google Scholar
Sanders, C.J. 1971. Sex pheromone specificity and taxonomy of budworm moths (Choristoneura). Science (Washington, D.C.), 171: 911913.CrossRefGoogle ScholarPubMed
Shepherd, R.F. 1961. A comparison of the developmental rates of one- and two-year cycle spruce budworm. The Canadian Entomologist, 93: 764771.CrossRefGoogle Scholar
Shepherd, R.F. 1992. Relationships between attack rates and survival of western spruce budworm, Choristoneura occidentalis Freeman (Lepidoptera: Tortricidae), and bud development of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco. The Canadian Entomologist, 124: 347358.CrossRefGoogle Scholar
Shepherd, R.F., Gray, T.G., and Harvey, G.T. 1995. Geographical distribution of Choristoneura species (Lepidoptera: Tortricidae) feeding on Abies, Picea, and Pseudotsuga in western Canada and Alaska. The Canadian Entomologist, 127: 813830.CrossRefGoogle Scholar
Sperling, F.A.H. 1994. Sex-linked genes and species differences in Lepidoptera. The Canadian Entomologist, 126: 807818.CrossRefGoogle Scholar
Sperling, F.A.H., and Hickey, D.A. 1995. Amplified mitochondrial DNA as a diagnostic marker for species of conifer-feeding Choristoneura (Lepidoptera: Tortricidae). The Canadian Entomologist, 127: 277288.CrossRefGoogle Scholar
Stehr, G.W. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America. II. Geographic distribution in accordancewith forest regions. The Canadian Entomologist, 99: 456463.CrossRefGoogle Scholar
Stock, M.W., and Castrovillo, P.J. 1981. Genetic relationships among representative populations of five Choristoneura species: C. occidentalis, C. retiniana, C. biennis, C. lambertiana, and C. fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 113: 857865.CrossRefGoogle Scholar
Tauber, M.J., Tauber, C.A., and Masaki, S. 1986. Seasonal adaptations in insects. Oxford University Press, Oxford.Google Scholar
Volney, W.J.A. 1985. Comparative population biologies of North American spruce budworms. In Proceedings of the CANUSA Spruce Budworms Research Symposium: Recent Advances in Spruce Budworms Research, Bangor, Maine, 16–20 September 1984. Edited by Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J.. Catalog No. Fo18-5/1984, Ministry of Supplies and Services Canada, Ottawa, Ontario. pp. 7183.Google Scholar
Volney, W.J.A., Liebhold, A.M., and Waters, W.E. 1984. Host associations, phenotypic variation, and mating compatibility of Choristoneura occidentalis and C. retiniana (Lepidoptera: Tortricidae) populations in south-central Oregon. The Canadian Entomologist, 116: 813826.CrossRefGoogle Scholar