Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T23:48:29.773Z Has data issue: false hasContentIssue false

DAILY PATTERNS OF ACTIVITY OF FEMALES OF THE ORANGE WHEAT BLOSSOM MIDGE, SITODIPLOSIS MOSELLANA (GÉHIN) (DIPTERA: CECIDOMYIIDAE)

Published online by Cambridge University Press:  31 May 2012

Kenneth A. Pivnick
Affiliation:
Agriculture Canada Research Station, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
Edith Labbé
Affiliation:
Département de biologie, Université Laval, Québec, Québec, Canada GlK 7P4

Abstract

The daily patterns of activity of females of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin), were observed in controlled laboratory conditions and in field conditions in eastern Saskatchewan in mid-July 1986 and 1987. In the field, during the daytime, females rested on stems of wheat plants within 30 cm of the ground and, at approximately 2000 hours CST, flew up to wheat heads. Most oviposition took place between 2000 and 2145 hours (or 75 min before, to 30 min after, sunset). Toward the end of the oviposition period, females were frequently seen drinking dew from wheat heads. On some evenings, females migrated down from the heads following oviposition, but on more than half of the evenings they remained on the heads until early morning. However, they never moved down to the low level they occupied during the day until the next morning, when the migration was usually complete by 0900–1000 hours. Light intensity appeared to regulate the vertical migration of females. Cloudy conditions may allow an earlier onset of oviposition. Flight was limited to air temperatures above 14–15 °C and oviposition to temperatures above 10–11 °C. Wind speeds of 10 km per h or more and rain occasionally limited activity. In the laboratory, oviposition activity occurred almost exclusively during the scotophase, mainly in the first 2 h. Mean total fecundity was 83.6 ± 10.9 (±SE) eggs, and mean longevity was 6.6 ± 0.6 days. No oviposition took place on the 1st night, and the greatest mean daily fecundity occurred on the 3rd night.

Résumé

Les cycles quotidiens d’activité des femelles de la Cécidomyie du blé, Sitodiplosis mosellana (Géhin), ont été étudiés en laboratoire dans des conditions contrôlées et en nature, dans l’est de la Saskatchewan, au milieu de juillet, en 1986 et 1987. En nature, durant la journée, les femelles étaient posées sur les tiges des plants de blé, à moins de 30 cm du sol; à environ 2000 heures HNC, elles volaient vers la tête des plants. La plupart des pontes se faisaient entre 2000 et 2145 heures (ou de 75 min avant à 30 min après le coucher du soleil). Vers la fin de la période de ponte, les femelles étaient souvent occupées à boire la rosée sur les épis. Certains soirs, des femelles migraient de l’épi vers la tige après la ponte, mais au cours de plus de la moitié des soirs d’observation, elles sont restées sur les épis jusqu’au petit matin. Cependant, elles ne regagnaient jamais avant le lendemain matin la position basse qu’elles occupaient sur le plant avant la ponte; la migration de retour vers le bas de la tige était ordinairement terminée entre 0900 et 1000 heures. C’est l’intensité de la lumière qui semblait régir la migration verticale des femelles. La présence de nuages déclenchait parfois la ponte plus tôt dans la soirée. Le vol se faisait seulement aux températures supérieures à 14–15 °C, et la ponte, seulement aux températures supérieures à 10–11 °C. L’activité était parfois enrayée par des vents de 10 km à l’heure ou plus ou par la pluie. En laboratoire, l’activité de ponte avait lieu presque exclusivement au cours de la scotophase, surtout au cours des 2 premières heures. La fécondité totale moyenne a été évaluée à 83,6 ± 10,9 (± erreur type) oeufs, et la longévité moyenne, à 6,6 ± 0,6 jours. Aucune ponte n’a été observée au cours de la 1re nuit et la fécondité moyenne la plus élevée au cours d’une journée a été enregistrée la 3e nuit.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1991. Control of wheat midge: 1991.Farm Facts, Saskatchewan Agriculture and Food, Regina, Saskatchewan. 2 pp.Google Scholar
Barnes, H.F. 1932. Studies of fluctuations in insect populations. I. The infestation of Broadbalk wheat by the wheat blossom midges (Cecidomyiidae). Journal of Animal Ecology 1: 1231.CrossRefGoogle Scholar
Barnes, H.F. 1953. The wheat blossom midges. New Biologist 14: 82103.Google Scholar
Barnes, H.F. 1956. Gall Midges of Economic Importance. Vol. VII: Gall Midges of Cereal Crops, pp.40–80. Crosby, Lockwood & Son, London. 261 pp.Google Scholar
Barker, P.S. 1984. Distribution of wheat midge damage in Manitoba in 1984.Proceedings of the Entomological Society of Manitoba 40: 2529.Google Scholar
Basedow, T., and Schutte, F.. 1973. New studies concerning oviposition, economic damage threshold and control of the wheat blossom midges (Diptera: Cecidomyiidae). Zeitschrift für Angewandte Entomologie 73: 238251. [In German.]CrossRefGoogle Scholar
Basedow, T., and Schutte, F.. 1982. The population dynamics of the wheat blossom midges Contarinia tritici (Kirby) and Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in two wheat growing areas in northern Germany from 1969 to 1976. Zoologisches Jahrbuch für Systematik, Geographie and Okologie der Tiere 109: 3382. [In German.]Google Scholar
Borkent, A. 1989. A review of the wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Canada. Research Branch, Agriculture Canada Technical Bulletin 1989–5E: 24 pp.Google Scholar
Harris, M.O., and Rose, S.. 1991. Factors influencing the onset of egg-laying in a cecidomyiid fly. Physiological Entomology 16: 183190.CrossRefGoogle Scholar
Oakley, J.N. 1981. Wheat blossom midges. Ministry of Agriculture, Fisheries & Food, United Kingdom Leaflet 788: 6 pp.Google Scholar
Olfert, O.O., Mukerji, M.K.. and Doane, J.F.. 1985. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in spring wheat in Saskatchewan. The Canadian Entomologist 117: 593598.CrossRefGoogle Scholar
Perera, N., and Fernando, H.E.. 1969. Laboratory culture of the rice gall midge Pachydiplosis oryzae (Wood-Mason). Bulletin of Entomological Research 58: 439454.CrossRefGoogle Scholar
Pivnick, K.A. 1993. The response of males to a female sex pheromone in the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Journal of Chemical Ecology 19(8).CrossRefGoogle ScholarPubMed
Pivnick, K.A., and Labbé, E.. 1992. Emergence and calling rhythms, and mating behaviour of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 124: 501507.CrossRefGoogle Scholar
Reeher, M.M. 1945. The wheat midge in the Pacific Northwest. United States Department of Agriculture Circular 732: 8 pp.Google Scholar
Sanderson, E.D. 1915.p. 3 in Insect Pests of Farm, Garden and Orchard, 1st ed. J. Wiley and Sons, New York, NY. 68 pp.Google Scholar
Waquil, J.M., Teetes, G.L.. and Peterson, G.C.. 1986. Sorghum midge (Diptera: Cecidomyiidae) adult ovipositional behavior on resistant and susceptible sorghum hybrids. Journal of Economic Entomology 79: 530532.CrossRefGoogle Scholar