Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-10T04:01:25.396Z Has data issue: false hasContentIssue false

BIOSYSTEMATICS OF PISSODES GERMAR (COLEOPTERA: CURCULIONIDAE): SEASONALITY, MORPHOLOGY, AND SYNONYMY OF P. APPROXIMATUS HOPKINS AND P. NEMORENSIS GERMAR

Published online by Cambridge University Press:  31 May 2012

Thomas W. Phillips
Affiliation:
State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA13210
Stephen A. Teale
Affiliation:
State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA13210
Gerald N. Lanier
Affiliation:
State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA13210

Abstract

Pissodes approximatus Hopkins (1911) is a junior subjective synonym of P. nemorensis Germar (1824). The conspecificity of these entities, traditionally considered distinct based only on distribution and slight morphological differences, is corroborated here with comparative studies of ecology, behavior, and morphology. When pheromone-baited traps were deployed during the spring (May–June) and fall (November–December) in several localities to examine seasonal activity, southern populations (P. nemorensis sensu Hopkins) responded only in the fall and northern populations only in the spring, but a population in Virginia responded during both seasons. Laboratory studies found that individuals from five southern populations became reproductively mature under 16:8, 12:12, and 8:16 (L:D) photoperiods but weevils in a New York population did not mature under the 8:16 photoperiod. A two-species model based on strict seasonal isolation between northern and southern populations is rejected. Morphometrics revealed significant differences in six body dimensions and three morphometric ratios among 13 populations, but there was no geographic pattern of differences to suggest the existence of two species. Sexual dimorphism in rostrum length was most pronounced in southern populations but occurred in all five populations in which it was investigated. Examination of male and female genitalia revealed similar variation in northern and southern populations and conflicted with previously reported diagnostic differences. Our study and the results of earlier work lead us to conclude that the populations previously represented by the names P. nemorensis and P. approximatus comprise one widely distributed species and display intraspecific variation in life history and morphological characters.

Résumé

Pissodes approximatus Hopkins (1911) est un synonyme junior subjectif de P. nemorensis Germar (1824). La conspécificité de ces entités traditionnellement distinguées uniquement sur la base de leur répartition et de différences morphologiques mineures, est confirmée ici par des études biologiques, comportementales et morphologiques. Suite au déploiement de pièges à phéromone au printemps (mai–juin) et en automne (novembre–décembre) dans plusieurs localités afin d’étudier l’activité saisonnière, les populations du sud (P. nemorensis sensu Hopkins) ont répondu seulement en automne et celles du nord seulement au printemps; cependant une population de Virginie a répondu au cours des deux saisons. Au laboratoire, des individus de cinq populations du sud sont devenues reproductivement matures sous des photopériodes de 16:8, 12:12 et 8:16 (L:D), alors que les charançons d’une population de New York sont demeurés immatures sous une photopériode de 8:16. On doit rejeter le modèle d’isolation strictement saisonnière des populations du nord et du sud. La morphométrie a révélé des différences significatives pour six dimensions corporelles et trois rapports morphométriques chez 13 populations, mais il n’est apparu aucun morcellement géographique des différences pouvant confirmer l’existence de deux espèces. Le dimorphisme sexuel pour la longueur du rostre était maximal dans les populations du sud, mais il était présent chez les cinq populations étudiées. L’examen des génitalias mâle et femelle a révélé une variation semblable dans des populations du nord et du sud, en conflit avec les différences de nature diagnostique rapportées antérieurement. Notre étude et les résultats de travaux antérieurs nous amènent à conclure que les populations auparavant nommées P. nemorensis et P. approximatus forment une seule espèce largement répandue, montrant des caractères morphologiques et un cycle vital variables.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, T.H. 1979. Bionomics of Pissodes nemorensis (Coleoptera: Curculionidae) in North Florida. Ph.D. thesis, University of Florida, Gainesville, 100 pp.Google Scholar
Blakeslee, G.M., Foltz, J.L., and Oak, S. W.. 1981. The deodar weevil, a vector and wounding agent associated with pitch canker of slash pine. Phytopath. 71: 861.Google Scholar
Booth, D.C., and Lanier, G.N.. 1974. Evidence of an aggregating pheromone in Pissodes approximatus and P. strobi. Ann. ent. Soc. Am. 67: 992994.CrossRefGoogle Scholar
Booth, D.C., Phillips, T.W., Claesson, A., Silverstein, R.M., Lanier, G.N., and West, J.R.. 1983. Aggregation pheromone components of two species of Pissodes weevils (Coleoptera: Curculionidae): isolation, identification, and field activity. J. Chem. Ecol. 9: 112.CrossRefGoogle Scholar
Dietrich, H. 1931. Synonomy and notes on the Pissodes weevil attacking Cedrus deodara. J. econ. Ent. 24: 872874.CrossRefGoogle Scholar
Drooz, A.T. 1985. Insects of Eastern Forests. U.S.D.A. For. Serv. Misc. Publ. 1426. 608 pp.Google Scholar
Finnegan, R.J. 1958. The pine weevil Pissodes approximatus Hopkins in southern Ontario. Can. Ent. 90: 340354.CrossRefGoogle Scholar
Fontaine, M.S. 1981. Reproductive ecology of the deodar weevil, Pissodes nemorensis (Coleoptera: Curculionidae), in north Florida. M.S. thesis, University of Florida, Gainesville. 100 pp.Google Scholar
Fontaine, M.S., Foltz, J.L., and Nation, J.L.. 1983. Reproductive anatomy and seasonal development of the deodar weevil, Pissodes nemorensis (Coleoptera: Curculionidae) in north Florida. Environ. Ent. 12: 687691.CrossRefGoogle Scholar
Germar, E.F. 1824. Insectorum species novae aut minus cognitae, descriptionibus illustratae. 1: 315319.Google Scholar
Godwin, P.A., Valentine, H.T., and ODell, T.M.. 1982. Identification of Pissodes strobi, P. approximatus and P. nemorensis (Coleoptera: Curculionidae) using descriminant analysis. Ann. ent. Soc. Am. 75: 599604.CrossRefGoogle Scholar
Harman, D.M., and Kranzler, G.A.. 1969. Sound production in the white pine weevil, Pissodes strobi, and the northern pine weevil, P. approximatus. Ann. ent. Soc. Am. 62: 134136.CrossRefGoogle Scholar
Hopkins, A.D. 1911. Contributions toward a monograph of the bark-weevils of the genus Pissodes. U.S.D.A. Ent. Bull. 20 (Tech. Ser.). Part 1.Google Scholar
Lanier, G.N., Abrahamson, L.P., and Shoeneck, H.. 1984. The role of insects in the dynamics of scleroderris canker in New York. pp. 114–115 in Manion, P.D. (Ed.), Scleroderris Canker of Conifers. Nijhoff/Junk, The Hague. 273 pp.Google Scholar
Manna, G.K., and Smith, S.G.. 1959. Chromosomal polymorphism and inter-relationships among bark weevils of the genus Pissodes Germar. The Nucleus 2: 179208.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge, MA. 797 pp.CrossRefGoogle Scholar
Nei, M. 1972. Genetic distance between species. Am. Nat. 106: 283292.CrossRefGoogle Scholar
Ollieu, M.M. 1971. Damage to southern pines in Texas by Pissodes nemorensis. J. econ. Ent. 64: 14561459.CrossRefGoogle Scholar
Peck, W.D. 1817. On the insects which destroy the young branches of the pear tree and the leading shoot of the Weymouth pine. Mass. Agric. J. Repos. 4: 209.Google Scholar
Phillips, T.W. 1984. Ecology and systematics of Pissodes sibling species (Coleoptera: Curculionidae). Ph.D. thesis, State University of New York College of Environmental Science and Forestry, Syracuse, NY. 204 pp.Google Scholar
Phillips, T.W., and Lanier, G.N.. 1986. Interspecific activity of semiochemicals among sibling species of Pissodes (Coleoptera: Curculionidae). J. Chem. Ecol. 12: 15871601.CrossRefGoogle ScholarPubMed
Phillips, T.W., West, J.R., Foltz, J.L., Silverstein, R.M., and Lanier, G.N.. 1984. Aggregation pheromone of the deodar weevil, Pissodes nemorensis (Coleoptera: Curculionidae): isolation and activity of grandisol and grandisal. J. Chem. Ecol. 10: 14171423.CrossRefGoogle ScholarPubMed
Say, T. 1831. Description of North American Curculionides and an arrangement of some of our own species agreeably to the method of Schoenherr. New Harmony, Indiana.Google Scholar
Schoenherr, C.J. 1826. Curculionidum dispositio methodica. pp. 225226.Google Scholar
Smith, S.G. 1970. Chromosomal polymorphism in North American Pissodes weevils: structural isomerism. Can. J. Genet. Cytol. 12: 506540.CrossRefGoogle Scholar
Smith, S.G., and Sugden, B.A.. 1969. Host trees and breeding sites of native North American Pissodes bark weevils, with a note on synonomy. Ann. Ent. Soc. Am. 62: 146148.CrossRefGoogle Scholar
Stewart, W.E., and Bright, D.E.. 1982. Notes on Pissodes fiskei (Coleoptera: Curculionidae) with a redescription of the species. Coleopt. Bull. 36: 445452.Google Scholar
Tauber, M.J., and Tauber, C.A.. 1976. Insect seasonality: diapause maintenance, termination, and post-diapause development. Ann. Rev. Ent. 21: 81107.CrossRefGoogle Scholar
Tauber, M.J., Tauber, C.A., and Masaki, S.. 1986. Seasonal adaptations of insects. Oxford University Press, New York. 411 pp.Google Scholar
Valentine, B.D., and Valentine, B.S.. 1957. Some injurious weevils in Haiti (Curculionidae). Coleopt. Bull. 11: 2932.Google Scholar