Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T02:08:39.695Z Has data issue: false hasContentIssue false

ANT TRAFFIC ON DIFFERENT TREE SPECIES IN CONNECTICUT

Published online by Cambridge University Press:  31 May 2012

Ronald M. Weseloh
Affiliation:
Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA 06504

Abstract

Forest ants in Connecticut, especially Formica neogagates Emery and F. subsericea Say (Hymenoptera: Formicidae), feed on first- to third-instar larvae of gypsy moths, Lymantria dispar L. (Lepidoptera: Lymantriidae), but mainly forage on the ground while most young caterpillars are in trees. It would be helpful to obtain information about the individual ants that do climb trees. Thus, numbers of ants climbing up and down different species of forest trees were determined. Numbers varied with both tree species and trunk diameter. Some oaks, plus hickories, tended to have the most ant traffic. These trees were also the most likely to have trunk diameters positively correlated with ant activity. Ants appeared to obtain honeydew or perhaps nectar from the trees, as the crop contents of some ants tested positive for sugar. A possible way to induce more ants to climb trees, and thus to attack caterpillars in trees more frequently, would be to increase numbers of honeydew-producing insects in trees. It should also be possible to encourage ants by spraying trees with sugar solutions or other materials.

Résumé

Les fourmis des forêts du Connecticut, particulièrement Formica neogagates Emery et F. subsericea Say (Hymenoptera : Formicidae) se nourrissent de larves des stades 1–3 de la Spongieuse Lymantria dispar L. (Lepidoptera : Lymantriidae), mais elles cherchent leur nourriture surtout au sol, alors que les jeunes chenilles se trouvent dans les arbres. Il serait très utile de savoir pourquoi certaines fourmis grimpent aux arbres. Le nombre de fourmis grimpeuses a donc été déterminé sur différentes espèces d’arbres de la forêt. Ce nombre variait en fonction de l’espèce d’arbre et du diamètre du tronc. Certains chênes et des caryers étaient les arbres les plus fréquentés par les fourmis grimpeuses. Ces arbres étaient les plus aptes à avoir un diamètre en corrélation positive avec l’activité des fourmis. Les fourmis semblaient y trouver du miellat ou même du nectar puisque les contenus stomacaux de certaines fourmis contentaient du sucre. Une bonne façon d’inciter les fourmis à grimper aux arbres, et donc d’augmenter la fréquence de leurs attaques contre les larves de spongieuses, serait d’augmenter le nombre d’insectes producteurs de miellat dans les arbres. L’arrosage des arbres au moyen de solutions de sucre ou d’autres substances semble également une méthode susceptible d’inciter les fourmis à grimper.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlung, K.G. 1966. A critical evaluation of the European research on use of red wood ants (Formica rufa Group) for the protection of forests against harmful insects. Zeitshrift für Angewandte Entomologie 57: 167189.CrossRefGoogle Scholar
Compton, S.G., and Robertson, H.G.. 1988. Complex interactions between mutualisms: Ants tending homopterans protect fig seeds and pollinators. Ecology 69: 13021305.CrossRefGoogle Scholar
Finnegan, R.J. 1971. An appraisal of indigenous ants as limiting agents of forest pests in Quebec. The Canadian Entomologist 103: 14891493.CrossRefGoogle Scholar
Fritz, R.S. 1983. Ant protection of a host-plant's defoliator: Consequence of an ant–membracid mutualism. Ecology 64: 789794.CrossRefGoogle Scholar
Funkhouser, W.D. 1923. Family Mambracidae. pp. 199–200 in Britton, W.E. (Ed.), Connecticut Geographical and Natural History Survey. Bulletin 34: 807 pp.Google Scholar
Jones, D. 1984. Use, misuse, and role of multiple-comparison procedures in ecological and agricultural entomology. Environmental Entomology 16: 635649.CrossRefGoogle Scholar
Jones, D., and Matloff, N.. 1986. Statistical hypothesis testing in biology: A contradiction in terms. Journal of Economic Entomology 79: 11561160.CrossRefGoogle ScholarPubMed
Klotz, J.H. 1984. Diel differences in foraging in two ant species (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society 57: 111118.Google Scholar
Leonard, D.E. 1970. Feeding rhythm in larvae of the gypsy moth. Journal of Economic Entomology 63: 14541457.CrossRefGoogle Scholar
Mahdi, T., and Whittaker, J.B.. 1993. Do birch trees (Betula pendula) grow better if foraged by wood ants? Journal of Animal Ecology 62: 101116.CrossRefGoogle Scholar
Mason, C.J., and McManus, M.L.. 1981. Larval dispersal of the gypsy moth. pp. 161–202 in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Toward Integrated Pest Management. United States Forest Service Technical Bulletin 1584: 757 pp.Google Scholar
Messina, F.J. 1981. Plant protection as a consequence of an ant-membracid mutualism: Interactions on goldenrod (Solidago sp.). Ecology 62: 14331440.CrossRefGoogle Scholar
Noreen, E.W. 1989. Computer-intensive Methods for Testing Hypothesis: An Introduction. John Wiley and Sons, New York, NY.Google Scholar
Perry, J.N. 1986. Multiple-comparison procedures: A dissenting view. Journal of Economic Entomology 79: 11491155.CrossRefGoogle ScholarPubMed
Skinner, G.J., and Whittaker, J.B.. 1981. An experimental investigation of inter-relationships between the wood-ant (Formica rufa) and some tree-canopy herbivores. Journal of Animal Ecology 50: 313326.CrossRefGoogle Scholar
Southwood, T.R.E. 1978. Ecological Methods. Chapman and Hall, London. 524 pp.Google Scholar
Van Handel, E. 1972. The detection of nectar in mosquitoes. Mosquito News 32: 458.Google Scholar
Weseloh, R.M. 1988. Effects of microhabitat, time of day, and weather on predation of gypsy moth larvae. Oecologia 77: 250254.CrossRefGoogle ScholarPubMed
Weseloh, R.M. 1989. Simulation of predation by ants based on direct observations of attacks on gypsy moth larvae. The Canadian Entomologist 121: 10691076.CrossRefGoogle Scholar
Weseloh, R.M. 1993. Manipulation of forest ant (Hymenoptera: Formicidae) abundance and resulting impact on gypsy moth (Lepidoptera: Lymantriidae) populations. Environmental Entomology 22: 587594.CrossRefGoogle Scholar
Weseloh, R.M. 1994 a. Forest ant (Hymenoptera: Formicidae) effect on gypsy moth (Lepidoptera: Lymantriidae) larval numbers in a mature forest. Environmental Entomology 23: 870877.CrossRefGoogle Scholar
Weseloh, R.M. 1994 b. Spatial distribution of the ants Formica subsericea, F. neogagates, and Aphaenogaster fulva (Hymenoptera: Formicidae) in Connecticut. Environmental Entomology 23: 11651170.CrossRefGoogle Scholar
Whittaker, J.B. 1991. Effects of ants on temperate woodland trees. pp. 67–79 in Huxley, C.R., and Cutter, D.F. (Eds.), Ant-Plant Interactions. Oxford Science Publications, Oxford. 601 pp.Google Scholar
Whittaker, J.B., and Warrington, S.. 1985. An experimental field study of different levels of insect herbivory induced by Formica rufa predation on sycamore (Acer psueoplatanus). III. Effects on tree growth. Journal of Applied Ecology 22: 797811.CrossRefGoogle Scholar
Wilkinson, L. 1988. SYSTAT: The System for Statistics. SYSTAT, Evanston, IL.Google Scholar