Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-09T04:11:39.882Z Has data issue: false hasContentIssue false

ALLOZYME VARIATION, RELATEDNESS AMONG PROGENY IN A NEST, AND SEX RATIO IN THE LEAFCUTTER BEE, MEGACHILE ROTUNDATA (FABRICIUS) (HYMENOPTERA: MEGACHILIDAE)

Published online by Cambridge University Press:  31 May 2012

D.B. McCorquodale
Affiliation:
Department of Behavioural and Life Sciences, University College of Cape Breton, Box 5300, Sydney, Nova Scotia, Canada B1P 6L2
R.E. Owen
Affiliation:
Department of Chemical and Biological Sciences, Mount Royal College, Calgary, Alberta, Canada T3E 6K6 and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Abstract

We assessed enzyme variability in a solitary leafcutter bee, Megachile rotundata (Fabricius), and found sufficient variability to compare relatedness among progeny in a nest in two samples: (1) nests with an associated adult female (putative mother) and (2) nests with out-of-sequence male progeny (M. rotundata, like most cavity-nesting solitary aculeates, usually provisions all female cells in a nest before any male cells). Estimates of relatedness from nests with associated adult females were consistent with the progeny in a nest being closely related and the offspring of a single, once-mated female. The relatedness estimates from nests with out-of-sequence males were all much lower, suggesting some combination of nest parasitism, nest usurpation, nest abandonment, and multiply mated females in these nests. The high levels of relatedness among female progeny in the first sample, as expected for full sisters in a haplodiploid system, are considered with respect to the evolution of social behaviour in the Hymenoptera. Besides higher estimates of relatedness, the nests with an associated female also had a lower male:female sex ratio than did nests with out-of-sequence males.

Résumé

Nous avons estimé la variabilité enzymatique chez une abeille découpeuse solitaire, Megachile rotundata (Fabricius), et avons trouvé suffisamment de variabilité pour comparer les liens de parenté entre rejetons d’un même nid dans deux échantillons (1) nids où il y avait une femelle adulte associée (mère putative) et (2) nids avec progéniture de mâles apparus hors de l’ordre habituel (M. rotundata, comme la plupart des aculéates solitaires qui nichent dans des cavités, approvisionne ordinairement toutes les cellules de femelles dans un nid avant d’approvisionner celles des mâles). L’estimation des liens de parenté dans les nids à femelles associées a permis de reconnaître une progéniture composée de rejetons très apparentés, produits par une seule femelle, accouplée une seule fois. Dans les nids contenant des mâles apparus hors de l’ordre habituel, les liens de parenté étaient beaucoup moins forts, ce qui semble indiquer l’existence d’une combinaison de divers facteurs, parasitisme des nids, usurpation des nids, abandon, accouplements multiples des femelles. Les liens de parenté étroits au sein de la progéniture des femelles du premier échantillon, caractéristiques de femelles soeurs dans un système haplodiploïde, sont examinés en fonction de l’évolution du comportement social chez les hyménoptères. Outre l’étroitesse des liens de parenté observés, le rapport mâles : femelles dans les nids associés à une femelle était plus faible que dans les nids contenant des mâles apparus hors de l’ordre habituel.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, J. 1982. Nest usurpation and sequential occupation in the digger wasp Crabro monticola (Hymenoptera: Sphecidae). Canadian Journal of Zoology 60: 921925.CrossRefGoogle Scholar
Alcock, J., Eickwort, G.C., and Eickwort, K.R.. 1977. The reproductive behavior of Anthidium maculosum (Hymenoptera: Megachilidae) and the evolutionary significance of multiple copulations by females. Behavioral Ecology and Sociobiology 2: 385396.CrossRefGoogle Scholar
Berkelhamer, R.C. 1983. Intraspecific genetic variation and haplodiploidy, eusociality, and polygyny in the Hymenoptera. Evolution 37: 540545.CrossRefGoogle ScholarPubMed
Blanchetot, A. 1992. DNA fingerprinting analysis in the solitary bee, Megachile rotundata: Variability and nest mate relationships. Genome 35: 681688.CrossRefGoogle Scholar
Choudhary, M., Strassmann, J.E., Solis, C.R., and Queller, D.C.. 1993. Microsatellite variation in a social insect. Biochemical Genetics 31: 8796.CrossRefGoogle Scholar
Crespi, B.J. 1991. Heterozygosity in the haplodiploid Thysanoptera. Evolution 45: 458464.Google ScholarPubMed
Easteal, S., and Boussy, I.A.. 1987. A sensitive and efficient isoenzyme technique for small arthropods and other invertebrates. Bulletin of Entomological Research 77: 407415.CrossRefGoogle Scholar
Field, J. 1992. Intraspecific parasitism as an alternative reproductive tactic in nest-building wasps and bees. Biological Reviews 67: 79126.CrossRefGoogle Scholar
Frohlich, D.R., Brindley, W.A., Burris, T.E., and Youseff, N.N.. 1990. Esterase isozymes in a solitary bee, Megachile rotundata (Fab.): Characterization, developmental multiplicity, and adult variability. Biochemical Genetics 28: 347358.CrossRefGoogle Scholar
Gadagkar, R. 1991. On testing the role of genetic asymmetries created by haplodiploidy in the evolution of eusociality in the Hymenoptera. Journal of Genetics 70: 131.CrossRefGoogle Scholar
Garofalo, C.A., Camillo, E., Campos, M.J.O., and Serrano, J.C.. 1992. Nest re-use and communal nesting in Microthurge corombae (Hymenoptera, Megachilidae), with special reference to nest defense. Insectes Sociaux 39: 23012311.CrossRefGoogle Scholar
Hamilton, W.D. 1964. The genetical theory of social evolution. I and II. Journal of Theoretical Biology 7: 152.CrossRefGoogle Scholar
Hamilton, W.D. 1972. Altruism and related phenomena, mainly in the social insects. Annual Review of Ecology and Systematics 3: 193232.CrossRefGoogle Scholar
Hebert, P.D.N., and Beaton, M.. 1989. Methodologies for Allozyme Analysis using Cellulose Acetate Electrophoresis. Helena Laboratories, Beaumont, TX. 48 pp.Google Scholar
Hedrick, P.W. 1985. Genetics of Populations. Jones and Bartlett, Boston, MA. 445 pp.Google Scholar
Hill, W.G. 1974. Estimation of linkage disequilibrium in randomly mating populations. Heredity 33: 229239.CrossRefGoogle ScholarPubMed
Krombein, K.V. 1967. Trap-nesting Wasps and Bees: Life Histories, Nests, and Associates. Smithsonian Institution Press, Washington, DC. 570 pp.CrossRefGoogle Scholar
Kukuk, P.F., and Sage, G.K.. 1994. Reproductivity and relatedness in a communal halictine bee Lasioglossum (Chilalictus) hemichalceum. Insectes Sociaux 41: 443455.CrossRefGoogle Scholar
Lester, L.J., and Selander, R.K.. 1979. Population genetics of haplodiploid insects. Genetics 92: 13291345.CrossRefGoogle ScholarPubMed
Mayer, D.F. 1994. Effects of male to female ratio and number of females per nesting tunnel on sex ratio and number of progeny in the alfalfa leafcutter bee Megachile rotundata (Hymenoptera: Megachilidae). Journal of the British Columbia Entomological Society 91: 4346.Google Scholar
McCorquodale, D.B. 1989. Nest sharing, nest switching, longevity and overlap of generations in Cerceris antipodes (Hymenoptera: Sphecidae). Insectes Sociaux 36: 4250.CrossRefGoogle Scholar
McCorquodale, D.B., and Owen, R.E.. 1994. Laying sequence, diploid males and nest usurpation in the leafcutter bee, Megachile rotundata (Hymenoptera: Megachilidae). Journal of Insect Behavior 7: 731738.CrossRefGoogle Scholar
Michener, C.D. 1974. The Social Behavior of the Bees. Harvard University Press, Cambridge, MA. 404 pp.Google Scholar
Owen, R.E. 1988. Selection at two sex-linked loci. Heredity 60: 415425.CrossRefGoogle ScholarPubMed
Packer, L., Dzinas, A., Strickler, K., and Scott, V.. 1995. Genetic differentiation between two host “races” and two species of cleptoparasitic bees and between their two hosts. Biochemical Genetics 33: 97109.CrossRefGoogle ScholarPubMed
Packer, L., and Owen, R.E.. 1989. Allozyme variation in Halictus rubicundus (Christ): A primitively social bee (Hymenoptera: Halictidae). The Canadian Entomologist 121: 10491058.CrossRefGoogle Scholar
Packer, L., and Owen, R.E.. 1992. Variable enzyme systems in the Hymenoptera. Biochemical Systematics and Ecology 20: 17.CrossRefGoogle Scholar
Packer, L., and Owen, R.E.. 1994. Relatedness and sex ratio in a primitively eusocial halictine bee. Behavioral Ecology and Sociobiology 34: 110.CrossRefGoogle Scholar
Page, R.E., and Metcalf, R.A.. 1982. Multiple mating, sperm utilization and social evolution. American Naturalist 119: 263281.CrossRefGoogle Scholar
Pamilo, P. 1982. Multiple mating in Formica ants. Hereditas 97: 3745.CrossRefGoogle Scholar
Pamilo, P. 1990. Comparison of relatedness estimators. Evolution 44: 13781382.CrossRefGoogle ScholarPubMed
Pamilo, P., Varvio-Aho, S.-L., and Pekkarinen, A.. 1978. Low enzyme variability in Hymenoptera as a consequence of haplodiploidy. Hereditas 88: 9399.CrossRefGoogle Scholar
Queller, D.C., and Goodnight, K.F.. 1989. Estimating relatedness using genetic markers. Evolution 43: 258275.CrossRefGoogle ScholarPubMed
Richards, K.W. 1984. Alfalfa leafcutter bee management in Western Canada. Agriculture Canada Publication 1495/E: 153.Google Scholar
Schwarz, M.P. 1987. Intra-colony relatedness and sociality in the allodapine bee, Exoneura bicolor. Behavioral Ecology and Sociobiology 21: 387392.CrossRefGoogle Scholar
Severinghaus, L.L., Kurtak, B.H., and Eickwort, G.C.. 1981. Reproductive behavior of Anthidium manicatum (Hymenoptera: Megachilidae) and the significance of size for territorial males. Behavioral Ecology and Sociobiology 9: 5158.CrossRefGoogle Scholar
Shoemaker, D.D., Costa, J.T. III, and Ross, K.G.. 1992. Estimates of heterozygosity in two social insects using a large number of electrophoretic markers. Heredity 69: 573582.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry, 2nd ed. W.H. Freeman, San Francisco, CA. 859 pp.Google Scholar
Spiess, E.B. 1977. Genes in Populations. John Wiley, New York, NY. 780 pp.Google Scholar
Tepedino, V.J., and Torchio, P.F.. 1994. Founding and usurping: Equally efficient paths to nesting success in Osmia lignaria propinqua (Hymenoptera: Megachilidae). Annals of the Entomological Society of America 87: 946953.CrossRefGoogle Scholar
Trivers, R. 1985. Social Evolution. Benjamin/Cummings, Menlo Park, CA. 462 pp.Google Scholar
Trivers, R., and Hare, H.. 1976. Haplodiploidy and the evolution of the social insects. Science 191: 249263.CrossRefGoogle Scholar
Turell, M.J. 1976. Observations on the mating behavior of Anthidiellum notatum and Anthidiellum perplexum. Florida Entomologist 59: 5561.CrossRefGoogle Scholar
Wilson, E.O. 1971. The Insect Societies. Harvard University Press, Cambridge, MA. 548 pp.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice Hall, Englewood, NJ. 718 pp.Google Scholar