Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T17:04:22.810Z Has data issue: false hasContentIssue false

Age-stage, two-sex life history of the golden twin spot moth, Chrysodeixis chalcites (Lepidoptera: Noctuidae), on six commercial tomato cultivars under laboratory conditions

Published online by Cambridge University Press:  29 April 2015

Gadir Nouri-Ganbalani
Affiliation:
Department of Plant Protection, Faculty of Agricultural Science, University of Mohaghegh Ardabili, Ardabil, Iran
Mozhgan Mardani-Talaee*
Affiliation:
Department of Plant Protection, Faculty of Agricultural Science, University of Mohaghegh Ardabili, Ardabil, Iran
Mohamad Reza Haji-Ramezani
Affiliation:
Department of Plant Protection, Faculty of Agricultural Science, University of Mohaghegh Ardabili, Ardabil, Iran
*
1Corresponding author (e-mail: mardani@uma.ac.ir).

Abstract

The tomato looper, Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae), is a major pest that feeds on some fodder crops, vegetables, and ornamental plants in diverse plant families. We studied the effect of different cultivars of tomato including: Cal.JN3, Hed Rio Grande, Rio Grande UG, SUN 6108 f1, Super crystal, and Super strain B on the life history of C. chalcites under laboratory conditions (25±1 °C, 65±5% relative humidity, and 16:8 (light:dark hours). Data were analysed using the age-stage, two-sex life table method. Tomato cultivars had significant effects on developmental time of larvae, pupae, and total preadult stages of C. chalcites. The longest (17.39 days) and the shortest (13.93 days) larval period were observed on Hed Rio Grande and SUN 6108 f1, respectively. The longest pupal period was observed on Cal.JN3 (12.16 days) and Hed Rio Grande (12.11 days) compared with other cultivars. The lowest amount of larval growth index and rate of ovipositon days was observed on Cal.JN3. The results of this study revealed that Cal.JN3 and Hed Rio Grande were the less suitable cultivars to C. chalcites compared with other cultivars studied and can be used in integrated pest management programme of this pest.

Type
Insect Management
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Keith Summerville

References

Alonso, A. 2009. Eficacia del control químico y ubicación de trampas para monitoreo de Chrysodeixis chalcites (Esper, 1789) en cultivos de platanera de Canarias. Trabajo Fin de Carrera. Escuela Técnica Superior de Ingeniería Agraria, Universidad de La Laguna, La Laguna, Spain.Google Scholar
Amate, J., Barranco, P., and Cabello, T. 1998. Identification of larvae of the principal noctuid pest species in Spain (Lepidoptera: Noctuidae). Boletín de Sanidad Vegetal – Plagas, 24: 101106.Google Scholar
Arimura, G., Kost, C., and Boland, W. 2005. Herbivore-induced, indirect plant defences. Biochimica et Biophysica Acta, 1734: 91111.CrossRefGoogle ScholarPubMed
Avidov, Z. and Harpaz, I. 1969. Plant pests of Israel. Universities Press, Jerusalem, Israel.Google Scholar
Bernays, E.A. and Chapman, R.F. 1994. Host plant selection by phytophagous insects. Chapman and Hall, New York, New York, United States of America.CrossRefGoogle Scholar
Bhonwong, A., Stout, M.J., Attajarusit, J., and Tantasawat, P. 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Journal of Chemical Ecology, 32: 2838.CrossRefGoogle Scholar
Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17: 1526.CrossRefGoogle Scholar
Browne, L.B. and Raubenheimer, D. 2003. Ontogenetic changes in the rate of ingestion and estimates of food consumption in fourth and fifth instar Helicoverpa armigera caterpillars. Journal of Insect Physiology, 49: 6371.CrossRefGoogle Scholar
Broza, M. and Sneh, B. 1994. Bacillus thuringiensis spp. kurstaki as an effective control agent of lepidopteran pests in tomato fields in Israel. Journal of Economic Entomology, 87: 923928.CrossRefGoogle Scholar
Cabello, T., González, M.P., Justicia, L., and Belda, J.E. 1996. Plagas de noctuidos (Lep.; Noctuidae) y su fenología en cultivos en invernaderos. Informaciones Técnicas 39/96. Dirección General de Investigación y Formación Agraria, Consejería de Agricultura y Pesca, Junta de Andalucía, Sevilla, Spain.Google Scholar
Carey, J.R. 1993. Applied demography for biologists with special emphasis on insects. Oxford University Press, New York, New York, United States of America. P. 211.CrossRefGoogle Scholar
Carey, J.R. 1995. Insect demography. In Encyclopedia of environmental biology. Volume 2. Edited by W.A. Nierenberg. Academic Press, San Diego, California, United States of America. Pp. 289303.Google Scholar
Chi, H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17: 2634.CrossRefGoogle Scholar
Chi, H. and Liu, H. 1985. Two new methods for the study of insect population ecology. Academia Sinica Bulletin of the Institute of Zoology, 24: 225240.Google Scholar
Deevey, E.S. 1947. Life tables for natural populations of animals. The Quarterly Review of Biology, 22: 283314.CrossRefGoogle ScholarPubMed
Del Pino, M., Carnero, A., Cabello, T., and Hernández, E. 2011. La lagarta o bicho camello, Chrysodeixis chalcites (Esper, 1789), una plaga emergente en los cultivos de platanera de Canarias. Phytoma, 225: 2124.Google Scholar
European and Mediterranean Plant Protection Organization. 2004. Good plant protection practice, solanaceous crops under protected cultivation. EPPO Bulletin, 34: 6577.CrossRefGoogle Scholar
Gasim, G.Y. and Younis, H.T. 1989. Biological studies on tomato leafworm Plusia chalcites L. (Noctuidae: Lepidoptera) under effect of constant temperatures. Mesopotamia Journal of Agriculture, 21: 325334.Google Scholar
Goodey, B. 1991. Chrysodeixis chalcites – observations on the life cycle in captivity. The Entomologists Record, 103: 111118.Google Scholar
Harakly, F.A. and Farag, S.S. 1975. Biological studies on the tomato looper Chrysodeixis chalcites (Esper) in Egypt. Bulletin de la Société entomologique d'Égypte, 59: 295299.Google Scholar
Huang, Y.B. and Chi, H. 2013. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae) with an invalidation of the jackknife technique. Journal of Applied Entomology, 137: 327339.CrossRefGoogle Scholar
Hwang, S.Y., Liu, C.H., and Shen, T.C. 2008. Effects of plant nutrient availability and host plant species on the performance of two Pieris butterflies (Lepidoptera: Pieridae). Biochemical Systematic and Ecology, 36: 505513.CrossRefGoogle Scholar
Istock, C.A. 1981. Natural selection and life history variation: theory plus lessons from a mosquito. In Insect life history patterns, habitat and geographic variation. Edited by R.F. Denno and H. Dingle. Springer, New York, New York, United States of America. Pp. 113127.CrossRefGoogle Scholar
Jallow, M.F.A. and Matsumura, M. 2001. Influence of temperature on the rate of development of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 36: 427430.CrossRefGoogle Scholar
Jansen, B.J.M. and de Groot, A. 2004. Occurrence, biological activity and synthesis of drimane sesquiterpenoids. Natural Product Reports, 21: 449477.CrossRefGoogle ScholarPubMed
Kogan, M. and Ortman, E.E. 1978. Antixenosis a new term proposed to replace Painter’s non-preference modality of resistance. Bulletin of the Entomological Society of America, 24: 175176.CrossRefGoogle Scholar
Liu, Z., Li, D., Gong, P.Y., and Wu, K.J. 2004. Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on different host plants. Environmental Entomology, 33: 15701576.CrossRefGoogle Scholar
Mardani-Talaei, M., Nouri-Ganbalani, G., Naseri, B., and Hassanpour, M. 2012. Life history studies of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) on 10 corn hybrids. Journal of the Entomological Research Society, 14: 918.Google Scholar
Marouf, A., Amir-Maafi, M., and Shayesteh, N. 2013. Two-sex life table analysis of population characteristics of almond moth, Cadra cautella (Lepidoptera: Pyralidae) on dry and semi-dry date palm varieties. Journal of Crop Protection, 2: 171181.Google Scholar
Murillo, H.D., Hunt, W.A., and Van Laerhoven, S.L. 2013. First records of Chrysodeixis chalcites (Lepidoptera: Noctuidae: Plusiinae) for east-central Canada. The Canadian Entomologist, 145: 15.CrossRefGoogle Scholar
Nemati Kalkhoran, M., Naseri, B., Rahimi Namin, F., and Kouhi, D. 2013. Life table parameters and digestive enzymes activity of Helicoverpa armigera (Lep.: Noctuidae) on different tomato cultivars. Journal of Entomological Society of Iran, 33: 4558.Google Scholar
Painter, R.H. 1951. Insect resistance in crop plants. Macmillan, New York, New York, United States of America.CrossRefGoogle Scholar
Rashid, F.F., Hammad, S.M., and Hassan, S.M. 1971. The biology of Autographa chalcites L. (Lepidoptera: Noctuidae) in Alexandria region. Bulletin de la Société entomologique d'Égypte, 55: 419426.Google Scholar
Safuraie-Parizi, S., Fathipour, Y., and Talebi, A.A. 2014. Evaluation of tomato cultivars to Helicoverpa armigera using two-sex life table parameters in laboratory. Journal of Asia-Pacific Entomology, 17: 837844.CrossRefGoogle Scholar
Samraj, D.A. and David, B.V. 1988. Life table studies on the spotted bollworm, Earias vittella (Fabricius) (Lepidoptera: Noctuidae) in cotton ecosystem. Journal of the Bombay Natural History Society, 85: 637641.Google Scholar
Setamou, M., Schulthess, F., Bosque-Perez, N.A., Poehling, H.M., and Borgemeister, C. 1999. Bionomics of Mussidia nigrivenella (Lepidoptera: Pyralidae) on three host plants. Bulletin of Entomological Research, 89: 465471.CrossRefGoogle Scholar
Sharma, H.C., Agarwal, R.A., and Singh, M. 1982. Effect of some antibiotic compounds in cotton on post-embryonic development of spotted bollworm (Earias vittella F.) and the mechanism of resistance in Gossypium arboreum . Proceedings of the Indian Academy of Sciences: Animal Sciences, 91: 6777.CrossRefGoogle Scholar
Simmons, A.T., Gurr, G.M., Mcgrath, D., Martin, P.M., and Nicol, H.I. 2004. Entrapment of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on glandular trichomes of Lycopersicon species. Australian Journal of Entomology, 43: 196200.CrossRefGoogle Scholar
Soleimannejad, S., Fathipour, Y., Moharramipour, S., and Zalucki, M.P. 2010. Evaluation of potential resistance in seeds of different soybean cultivars to Helicoverpa armigera (Lepidoptera: Noctuidae) using demographic parameters and nutritional indices. Journal of Economic Entomology, 103: 14201430.CrossRefGoogle ScholarPubMed
Southwood, T.R.E. 1978. The construction, description and analysis of age-specific life tables. In Ecological methods with particular reference to the study of insect population. 2nd edition. Edited by T.R.E. Southwood. Chapman & Hall, London, United Kingdom.Google Scholar
Southwood, T.R.E. and Henderson, P.A. 2000. Ecological methods, 3rd edition. Blackwell, Oxford, United Kingdom.Google Scholar
Tabashnik, B.E. and Slansky, F. 1987. Nutritional ecology of forb foliage-chewing insect. In Nutritional ecology of insect, mite, spiders, and related invertebrates. Edited by F. Slansky and J.G. Rodriguez. Wiley, New York, New York, United States of America. Pp. 71163.Google Scholar
Tisdale, R.A. and Sappington, T.W. 2001. Realized and potential fecundity, egg fertility, and longevity of laboratory-reared female beet armyworm (Lepidoptera: Noctuidae) under different adult diet regimes. Annals of the Entomological Society of America, 94: 415419.CrossRefGoogle Scholar
Umbanhowar, J. and Hasting, A. 2002. The impact of resource limitation and phenology of parasitoid attack on the duration of insect herbivore outbreaks. Theoretical Population Biology, 62: 259269.CrossRefGoogle ScholarPubMed
van Lenteren, J.C. and Noldus, L.P.J.J. 1990. Whitefly plant relationship: behavioral and ecological whitefly their bionomics. In Pest status and management. Edited by D. Gerling. Intercept, Andover, United Kingdom.Google Scholar
van Oers, M.M., Herniou, E.A., Usmany, M., Messelink, G.J., and Vlak, J.M. 2004. Identification and characterization of a DNA photolyase-containing baculovirus from Chrysodeixis chalcites . Virology, 330: 460470.CrossRefGoogle ScholarPubMed
Yadav, R. and Chang, N.T. 2012. Age stage, two-sex life table of Thrips palmi Karny (Thysanoptera: Thripidae) on eggplant. Academic Journal of Entomology, 5: 151157.Google Scholar
Yu, J.Z., Chi, H., and Chen, B.H. 2005. Life table and predation of Lemnia biplagiata (Coleoptera: Coccinellidae) fed on Aphis gossypii (Homoptera: Aphididae) with a proof on relationship among gross reproduction rate, net reproduction rate, and preadult survivorship. Annals of the Entomological Society of America, 98: 475482.CrossRefGoogle Scholar
Zandigiacomo, P. 1990. The principal pests of soybean in north-eastern Italy in 1989. Informatore Fitopatologico, 40: 5558.Google Scholar