Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T14:02:03.280Z Has data issue: false hasContentIssue false

AGAPETA ZOEGANA (L.) (LEPIDOPTERA: COCHYLIDAE), A SUITABLE PROSPECT FOR BIOLOGICAL CONTROL OF SPOTTED AND DIFFUSE KNAPWEED, CENTAUREA MACULOSA MONNET DE LA MARCK AND CENTAUREA DIFFUSA MONNET DE LA MARCK (COMPOSITAE) IN NORTH AMERICA

Published online by Cambridge University Press:  31 May 2012

H. Müller
Affiliation:
C.A.B. International Institute of Biological Control, CH-2800 Delémont, Switzerland
D. Schroeder
Affiliation:
C.A.B. International Institute of Biological Control, CH-2800 Delémont, Switzerland
A. Gassmann
Affiliation:
C.A.B. International Institute of Biological Control, CH-2800 Delémont, Switzerland

Abstract

The taxonomy, distribution, life history, and host plant relationships of the cochylid moth Agapeta zoegana (L.), an oligophagous, facultatively multivoltine root feeder, are discussed. The results of oviposition and larval feeding tests with 56 plant species in five families are presented and show that A. zoegana is restricted to a few closely related species of Centaurea. In Europe the moth is widely distributed and abundant in the majority of the root-feeding guilds of Centaurea maculosa Monnet de la Marck studied, with densities of 23.6 larvae per 100 roots in eastern Austria/northwestern Hungary and less than 8 larvae per 100 roots in central Hungary and the Alsace. The acceptance of target North American species (the tetraploid form of C. maculosa and the diploid Centaurea diffusa Monnet de la Marck), the damage caused, and the active searching ability rate A. zoegana as a potentially effective natural enemy of spotted and diffuse knapweed in North America. Agapeta zoegana will be especially promising as it predominantly attacks the rosette, which is, according to a recently developed population model for diffuse knapweed in Canada, the most sensitive stage determining equilibrium knapweed density. Agapeta zoegana is compatible with Pelochrista medullana Staudinger (Lepidoptera: Cochylidae), another knapweed root feeder recently introduced into North America, and will complement the seed-feeding species already established. The moth was approved for release in Canada and the USA and has been established in British Columbia since 1984 on C. diffusa.

Résumé

Cette contribution porte sur la taxonomie, la distribution, le cycle vital et les relations avec les plantes-hôtes du papillon cochylide Agapeta zoegana (L.), une espèce radicicole oligophage facultativement multivoltine. Les résultats de tests de ponte et d’alimentation des larves avec 56 espèces de plantes appartenant à cinq familles sont rapportés, et montrent que A. zoegana est spécifique de quelques espèces apparentées de Centaurea. En Europe le papillon est largement distribué et abondant dans la majorité des communautés radicicoles associées à Centaurea maculosa Monnet de la Marck qui ont été étudiées, avec des densités de 23,6 larves par 100 racines dans l’est de l’Autriche–nord de la Hongrie, et moins de 8 larves par 100 racines en Hongrie centrale et en Alsace. L’acceptation d’espèces nord-américaines visées, la forme tétraploïde de C. maculosa et l’espèce diploïde C. diffusa Monnet de la Marck, les dommages infligés, de même que la capacité de recherche élevée de A. zoegana en font un auxiliaire naturel de lutte contre la centaurée maculée et la centaurée diffuse en Amérique du Nord. Agapeta zoegana sera d’autant plus efficace qu’il attaque la rosette, soit le stade critique pour la détermination de la densité d’équilibre de la centaurée d’après un modèle démographique de la centaurée diffuse récemment mis au point au Canada. Agapeta zoegana est compatible avec Pelochrista medullana Staudinger (Lepidoptera : Cochylidae), une autre espèce radicicole associée à la centaurée qui a été récemment introduite en Amérique du Nord, et s’ajoutera donc aux espèces déjà établies. Le relâchement du papillon a été approuvé au Canada et aux USA, et il est établi en Colombie-Britannique depuis 1984 sur C. diffusa.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradley, J.D., Tremevan, W.G., and Smith, A.. 1973. British tortricoid moths. Cochylidae and Tortricidae: Tortricinae. The Ray Soc. Mon. 147. 251 pp.Google Scholar
Crawley, M. 1983. Herbivory — The Dynamics of Animal Plant Interactions. Blackwell Publications, Oxford. 437 pp.Google Scholar
Dostál, J. 1976. Centaurea L. pp. 254–301 in Flora Europaea. Vol. 4. Cambridge Univ. Press. 505 pp.Google Scholar
Fletcher, R.A., and Renney, A.J.. 1963. A growth inhibitor found in Centaurea spp. Can. J. Plant Sci. 43: 475481.CrossRefGoogle Scholar
Fox, L.R., and Morrow, P.A.. 1981. Specialization: species property or local phenomenon? Science 211: 887893.Google Scholar
Gassmann, A., Schroeder, D., and Müller, H.. 1982. Investigations on Pelochrista medullana (Stgr) (Lep. Tortricidae), a possible biocontrol agent of diffuse and spotted knapweed, Centaurea diffusa Lam. and C. maculosa Lam. (Compositae) in North America. Final Report, CIBC, Delémont.Google Scholar
Goeden, R.D. 1983. Critique and revision of Harris' scoring system for selection of insects agents in biological control of weeds. Prot. Ecol. 5: 287301.Google Scholar
Groh, H. 1943. Canadian Weed Survey. 2nd Annu. Rep. Can. Dept. Agric. 74 pp.Google Scholar
Hannemann, H.J. 1964. Kleinschmetterlinge oder Microlepidoptera. II. Die Wickler s. 1. (Cochylidae unf Carposinidae). Die Zünslerartigen (Pyra- loidea) in Die Tierwelt Deutschlands, Dahl, et al. (Eds.), Vol. 50. 401 pp.Google Scholar
Harris, P. 1973. The selection of effective agents for the biological control of weeds. Can. Ent. 105: 14951503.Google Scholar
Harris, P., and Cranston, R.. 1979. An economic evaluation of control methods for diffuse and spotted knapwood in Western Canada. Can. J. Plant Sci. 59: 375382.Google Scholar
Harris, P., and Myers, J.H.. 1984. Centaurea diffusa Lam. and C. maculosa Lam. s. lat., diffuse and spotted knapweed (Compositae) in biological control programmes against insects and weeds in Canada 1969–1980. Agric. Bur.: 127137.Google Scholar
Herting, B., and Simmonds, F.J.. 1975. A Catalogue of Parasites and Predators of Terrestrial Arthropods. Section A, VI, 1, Commonwealth Agricultural Bureau, Slough. p. 176.Google Scholar
Hess, H.E., Landolt, E., and Hirzel, R.. 1977. Centaurea Lam. pp 436457in Flora der Schweiz und angrenzende Gebiete, Band 3. Birkhäuser Verlag, Basel und Stuttgart.Google Scholar
Howell, J.T. 1959. Distribution data on weedy thistles in western North America. Leaft. West. Bot. 9: 1729.Google Scholar
Maddox, D.M. 1979. The knapweeds: their economics and biological control in the Western States. U.S.A. Ranglands 1: 139143.Google Scholar
Moore, R.J., and Frankton, C.. 1974. The Thistles of Canada. Research Branch Canada Dept. Agric. Monograph 10. p. 81.Google Scholar
Muesebeck, C.F.W., Krombein, K.V., and Townes, H.K.. 1951. Hymenoptera of America North of Mexico. USDA Agric. Monograph 2, Washington, DC.1420 pp.Google Scholar
Müller, H. 1983. Untersuchungen zur Eignung von Stenodes straminea Haw. (Lep.: Cochylidae) für die biologische Bekämpfung von Centaurea maculosa Lam. gefleckte Flockenblume) (Compositae) in Kanada. Mitt. Schweiz. Ent. Ges. 56: 329342.Google Scholar
Müller, H. 1984. Die Strukturanalyse der Wurzelphytophagenkomplexe von Centaurea maculosa Lam. und C. diffusa Lam. (Compositae) in Europa und Interaktionen zwischen wichtigen Phytophagenarten und ihren Wirtspflanzen. Inauguraldissertation, phil. nat. Fakultät, Universität Bern.Google Scholar
Müller, H. 1987. Preliminary notes on the use of glass-faced boxes as a tool to study root/herbivore interactions. In Labeyrie, V., Fabres, G., and Lachaise, D. (Eds.), Insects–Plants. Dr. W. Junk Publishers, Dordrecht, The Netherlands.Google Scholar
Müller, H., Schroeder, D., and Gassmann, A.. 1982. Investigations on Agapeta zoegana L. (Lep. Cochylidae), a possible biocontrol agent of spotted knapweed, Centaurea maculosa Lam. (Compositae) in Canada. Final Report, Commonwealth Institute of Biological Control, Delémont, Switzerland.Google Scholar
Razowski, J. 1970. Cochylidae. In Amsel, H.G., Gregor, F., and Reisser, H. (Eds.), Microlepidoptera Palaearctica. Vol. 3. Verlag Georg Fromme & Co., Wien. 528 pp.Google Scholar
Schroeder, D. 1985. The search for effective biological control agents in Europe:1. Diffuse and spotted knapweed. pp. 103119in Delfosse, E.S. (Ed.), Proc. 6th Int. Symp. Biol. Contr. Weeds, Vancouver B.C., Canada, 1984. Agriculture Canada.Google Scholar
Schütze, K.T. 1931. Die Biologie der Kleinschmetterlinge unter besonderer Berücksichtigung ihrer Nährpflanzen und Erscheinungszeiten. Ent. Ver. Frankfurt a. M. 235 pp.Google Scholar
Southwood, T.R.E. 1978. Ecological Methods—with Particular Reference to the Study of Insect Populations. Chapman and Hall, London and New York, 2nd edition. 524 pp.Google Scholar
Swatchek, B. 1958. Die Larvalsystematik der Wickler (Tortricidae und Carposinidae). Akademie-Verlag, Berlin. pp. 229230.Google Scholar
Tóth, M., Guerrin, P.M., Buser, H.-R., Müller, H., Szöcs, G., Sciraki, G., and Arn, H.. 1985. Z-11-Tetradecenyl acetate: sex attractant of Agapeta zoegana (Lep.: Tortricidae), a potential species for the biological control of knapweed. Can. Ent. 117: 11631165.Google Scholar
Wapshere, A.J. 1985. Effectiveness of biological control agents for weeds: present quandaries. Agric. Ecosyst. Environ. 13: 261280.Google Scholar
Watson, A.K., and Renney, A.J.. 1974. The biology of Canadian weeds. 6. Centaurea diffusa and C. maculosa. Can. J. Plant Sci. 54: 687701.Google Scholar
Walter, H., and Lieth, H.. 1964. 1967. Klimadiagramm-Weltatlas, VEB Gustav Fischer Verlag, Jena.Google Scholar
Whaba, W.K. 1970. A method to measure the percentage attack of organisms in the field. pp. 9193in Proc. 1st Int. Symp. Biol. Contr. Weeds, Delémont. Misc. Publ. 1, Commonw. Inst. Biol. Control.Google Scholar