Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-28T19:54:01.690Z Has data issue: false hasContentIssue false

A technique for transplanting gall-making insects: impacts on gall-maker and parasitoid larvae

Published online by Cambridge University Press:  02 April 2012

Graham H. Cox
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 1R3
Stephen B. Heard*
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 1R3
Julie M. Seehawer
Affiliation:
Department of Biological Sciences, University of Iowa, Iowa City, IA 52240, United States of America
*
1Corresponding author (e-mail: sheard@unb.ca).

Abstract

Past studies of gall-maker-host interactions have been hampered by an inability to conduct experimental transplants of individuals between host plants. We describe a method for transplanting gall-maker larvae between galls on different individual host plants. Our method involves removing and inserting larvae through slits cut in young galls, and allows for healing and continuing growth of the gall. We developed and tested our method with larvae of the gall-making moth Gnorimoschema gallaesolidaginis Riley (Lepidoptera: Gelechiidae) on its two host plants, Solidago altissima L. and S. gigantea Ait. (Asteraceae). For three of four host × year combinations, unparasitized larvae survived at similar rates in transplants and controls. On one host in one year, transplant survival was low, possibly as a result of severe drought stress. Interestingly, survival of parasitized gall-maker larvae was lower in transplants for three of four host × year combinations, suggesting that gall-makers stressed by parasitoid attack are less able to tolerate transplant stress. Our technique may be applicable to many other gall-maker species, especially those making relatively thin-walled galls, and should represent a valuable new tool for the study of gall-maker-host interactions.

Résumé

Les études antérieures des interactions entre les insectes galligènes et leur hôtes ont été entravées par l’impossibilité de transplanter expérimentalement les individus entre les plantes hôtes. Nous décrivons une méthode pour transplanter les larves galligènes d’une galle à une autre sur différentes plantes hôtes individuelles. Notre méthode consiste dans le retrait ou l’insertion des larves par une fente pratiquée sur de jeunes galles et elle permet la cicatrisation et la poursuite de la croissance de la galle. Nous avons mis au point et testé notre méthode avec les larves du papillon de nuit galligène Gnorimoschema gallaesolidaginis (Riley) (Lepidoptera: Gelechiidae) sur ses deux plantes hôtes, Solidago altissima L. et S. gigantea Ait. (Asteraceae). Dans trois des quatre combinaisons hôte × année, les larves non parasitées dans les expériences de transplantation ont eu des taux de survie semblables à ceux des témoins. Dans une des années, chez un des hôtes, la survie après la transplantation était basse, possiblement à cause d’un stress dû à une forte sécheresse. Il est intéressant de noter que la survie des larves galligènes parasitées a été plus faible dans 3 des 4 combinaisons hôte × année, ce qui laisse croire que les insectes galligènes sous le stress d’une attaque de parasitoïdes sont moins capables de tolérer le stress de la transplantation. Notre technique peut vraisemblablement s’appliquer à plusieurs autres espèces d’insectes galligènes, particulièrement à celles qui construisent des galles à parois relativement minces; elle représente un nouvel outil précieux pour étudier les interactions galligène-hôte.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, W.G., Anderson, S.S., and McCrea, K.D. 1991. Nutrient sharing between sister ramets of Solidago altissima (Compositae). American Journal of Botany, 78: 15081514.CrossRefGoogle Scholar
Bird, J.M., and Hodkinson, I.D. 2005. What limits the altitudinal distribution of Craspedolepta species (Sternorrhyncha: Psylloidea) on fireweed? Ecological Entomology, 30: 510520.CrossRefGoogle Scholar
Cook, J.M., Rokas, A., Pagel, M., and Stone, G.N. 2002. Evolutionary shifts between host oak sections and host–plant organs in Andricus gallwasps. Evolution, 56: 18211830.Google ScholarPubMed
Cronin, J.T., and Abrahamson, W. G. 2001. Goldenrod stem galler preference and performance: effects of multiple herbivores and plant genotypes. Oecologia, 127: 8796.CrossRefGoogle ScholarPubMed
Egan, S.P., and Ott, J.R. 2007. Host plant quality and local adaptation determine the distribution of a gall-forming herbivore. Ecology, 88: 28682879.CrossRefGoogle ScholarPubMed
Environment Canada. 2008. National climate data and information archive [online]. Available at http://www.climate.weatheroffice.ec.gc.ca [accessed 20 May 2008].Google Scholar
Fernandes, G.W., and Negreiros, D. 2001. The occurrence and effectiveness of hypersensitive reaction against galling herbivores across host taxa. Ecological Entomology, 26: 4655.CrossRefGoogle Scholar
Fritz, R.S., Roche, B.M., Brunsfeld, S.J., and Orians, C.M. 1996. Interspecific and temporal variation in herbivore responses to hybrid willows. Oecologia, 108: 121129.CrossRefGoogle ScholarPubMed
Gagné, R.J. 1989. Plant-feeding gall midges of North America. Cornell University Press, Ithaca, New York.Google Scholar
Gratton, C., and Welter, S.C. 1999. Does “enemyfree space” exist? Experimental host shifts of an herbivorous fly. Ecology, 80: 773785.Google Scholar
Heard, S.B., Stireman, J.O. III, Nason, J.D., Cox, G.H., Kolacz, C.R., and Brown, J.M. 2006. On the elusiveness of enemy-free space: spatial, temporal, and host-plant-related variation in parasitoid attack rates on three gallmakers of goldenrods. Oecologia, 150: 421434.CrossRefGoogle ScholarPubMed
Joy, J.B., and Crespi, B.J. 2007. Adaptive radiation of gall-inducing insects with a single host-plant species. Evolution, 61: 784795.CrossRefGoogle ScholarPubMed
Lau, J.A. 2006. Evolutionary responses of native plants to novel community members. Evolution, 60: 5663.Google ScholarPubMed
Maddox, G.D., Cook, R.E., Wimberger, P.H., and Gardescu, S. 1989. Clone structure in four Solidago altissima (Asteraceae) populations: rhizome connections within genotypes. American Journal of Botany, 76: 318326.CrossRefGoogle Scholar
Nason, J.D., Heard, S.B., and Williams, F.R. 2002. Host associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae). Evolution, 56: 14751488.Google ScholarPubMed
Nyman, T., Widmer, A., and Roininen, H. 2000. Evolution of gall morphology and host-plant relationships in willow-feeding sawflies (Hymenoptera: Tenthreninidae). Evolution, 54: 526533.Google Scholar
Quiring, D.T., Flaherty, L., Johns, R., and Morrison, A. 2006. Variable effects of plant module size on abundance and performance of galling insects. In Galling arthropods and their associates: ecology and evolution. Edited by Ozaki, K., Yukawa, J., Ohgushi, T., and Price, P.W.. Springer-Verlag, Sapporo, Japan. pp. 189198.CrossRefGoogle Scholar
Sandland, G.J., and Minchella, D.J. 2003. Costs of immune defence: an enigma wrapped in an environmental cloak? Trends in Parasitology, 19: 571574.CrossRefGoogle Scholar
Seehawer, J.M. 2002. Impact of larval phenology and fi tness trade-offs on the host races of Gnorimoschema gallaesolidaginis and host related population structure in one of its parasitoids, Copidosoma gelechiae. M.S. thesis, University of Iowa, Iowa City, Iowa.Google Scholar
Semple, J.C., and Cook, R.E. 2006. Solidago. In Flora of North America. Edited by Flora North America Editorial Committee. Oxford University Press, Oxford, United Kingdom. pp. 107166.Google Scholar
Sokal, R.R., and Rohlf, F.J. 1981. Biometry: the principles and practice of statistics in biological research. W.H. Freeman, San Francisco, California.Google Scholar
Stireman, J.O. III, Nason, J.D., and Heard, S.B. 2005. Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod insect community. Evolution, 59: 25732587.CrossRefGoogle ScholarPubMed
Stone, G.N., and Schonrogge, K. 2003. The adaptive significance of insect gall morphology. Trends in Ecology and Evolution, 18: 512522.CrossRefGoogle Scholar
Stone, G.N., Schonrogge, K., Atkinson, R.J., Bellido, D., and Pujade-Villar, J. 2002. The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annual Review of Entomology, 47: 633668.CrossRefGoogle ScholarPubMed
Tien, N.S.H., Boyle, D., Kraaijeveld, A.R., and Godfray, H.C.J. 2001. Competitive abilty of parasitized Drosophila larvae. Evolutionary Ecology Research, 3: 747757.Google Scholar
Van Zandt, P.A., and Agrawal, A.A. 2004. Community-wide impacts of herbivore-induced plant responses in milkweed (Asclepias syriaca). Ecology, 85: 26162629.CrossRefGoogle Scholar
Yamazaki, K., and Ohsaki, N. 2006. Willow leaf traits affecting host use by the leaf-gall-forming sawfly. Population Ecology, 48: 363371.CrossRefGoogle Scholar