Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T10:00:43.570Z Has data issue: false hasContentIssue false

Sampling range and range of attraction of Dendroctonus pseudotsugae pheromone-baited traps

Published online by Cambridge University Press:  31 May 2012

Kevin J. Dodds*
Affiliation:
Department of Forest Science, Oregon State University, Corvallis, Oregon, United States 97331
Darrell W. Ross
Affiliation:
Department of Forest Science, Oregon State University, Corvallis, Oregon, United States 97331
*
1 Corresponding author (e-mail: Kevin.Dodds@orst.edu).

Abstract

Two mark–recapture experiments and a trap interference experiment were conducted to determine the sampling range and range of attraction, respectively, of Dendroctonus pseudotsugae Hopkins (Coleoptera: Scolytidae) pheromone-baited traps in northern Idaho. To determine the sampling range, either live beetles or logs containing brood were marked with one of four colors of fluorescent powder. Colored beetles or logs were placed along transects oriented away from a central pheromone-baited trap at distances of 50, 100, 200, and 300 m. A release distance of 400 m was added to one mark–recapture experiment during the 2nd year. To determine the range of attraction, a trap interference study was conducted. For this experiment, groups of three traps were oriented in equilateral triangles with distances of 50, 100, 200, and 300 m between the three traps. Distances between traps were changed daily to allow for adequate replication. Mark–recapture studies indicated that most D. pseudotsugae were recaptured from distances less than or equal to 200 m from the pheromone-baited trap. On average, 95% of beetles recaptured were males. Results of the trap interference experiment provided no insight into the range of attraction of D. pseudotsugae pheromones. Natural resource managers should attempt to place pheromone-baited suppression traps within 200 m of target D. pseudotsugae populations. Also, to minimize undesirable beetle-caused tree mortality, traps should be placed as far as possible from live trees that managers wish to protect.

Résumé

Nous avons procédé à deux expériences de marquage–recapture et une expérience d’interférence entre les pièges, les premières pour déterminer la portée de l’échantillonnage, la troisième pour délimiter l’étendue du pouvoir d’attraction de pièges garnis de phéromone de Dendroctonus pseudotsugae Hopkins (Coleoptera : Scolytidae) dans le nord de l’Idaho. Pour déterminer la portée de l’échantillonnage, des coléoptères vivants ou des troncs morts contenant des couvains ont été marqués au moyen de poudre fluorescente de l’une de quatre couleurs. Les coléoptères ou les troncs colorés ont été placés le long de transects orientés en direction opposée à celle d’un piège à phéromone central, à des distances de 50, 100, 200 et 300 m. Une distance de relâchement de 400 m a été ajoutée lors d’une expérience de marquage–recapture au cours de la 2e année. Pour évaluer le pouvoir d’attraction de la phéromone, nous avons procédé à une expérience d’interférence entre les pièges dans laquelle des groupes de trois pièges étaient été installés en triangles équilatéraux, à des distances de 50, 100, 200 et 300 m les uns des autres. Les distances entre les pièges ont été changées chaque jour pour qu’il y ait un nombre adéquat de répétitions de l’expérience. Les études de marquage–recapture ont montré que la plupart des scolytes recapturés provenaient d’une distance égale ou inférieure à 200 m d’un piège à phéromone. En moyenne, 95% des coléoptères recapturés étaient des mâles. Les résultats dl’interférence entre les pièges n’ont pas permis de conclure quoi que ce soit sur la portée du pouvoir d’attraction des phéromones de D. pseudotsugae. Nous recommandons aux gestionnaires de l’aménagement d’installer des pièges de suppression garnis de phéromones à moins de 200 m des populations de D. pseudotsugae visées. De plus, pour minimiser la mortalité des arbres due au scolyte, les pièges doivent être installés aussi loin que possible des arbres vivants que l’on veut protéger.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, M.D. 1966. Laboratory studies on the behaviour of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins. The Canadian Entomologist 98: 953–91CrossRefGoogle Scholar
Barclay, H.J., Safranyik, L., Linton, D. 1998. Trapping mountain pine beetle Dendroctonus ponderosae (Coleoptera: Scolytidae) using pheromone-baited traps: effects of trapping distance. Journal of the Entomological Society of British Columbia 95: 2531Google Scholar
Bennett, R.B., Borden, J.H. 1971. Flight arrestment of tethered Dendroctonus pseudotsugae and Trypodendron lineatum (Coleoptera: Scolytidae) in response to olfactory stimuli. Annals of the Entomological Society of America 64: 1273–86Google Scholar
Cook, S.P., Hain, F.P. 1992. The influence of self-marking with fluorescent powders on adult bark beetles (Coleoptera: Scolytidae). Journal of Entomological Science 27: 269–79Google Scholar
Dodds, K.J., Ross, D.W., Daterman, G.E. 2000. A comparison of traps and trap trees for capturing Douglas-fir beetle, Dendroctonus pseudotsugae (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia 97: 33–8Google Scholar
Dransfield, R.D. 1984. The range of attraction of the biconical trap for Glossina pallidipes and Glossina brevipalpis. Insect Science and its Application 5: 363–8Google Scholar
Franklin, A.J., Grégoire, J.C. 1999. Flight behaviour of Ips typographus L. (Col., Scolytidae) in an environment without pheromones. Annals of Forest Science 56: 591–8Google Scholar
Franklin, A.J., Debruyne, C., Grégoire, J.C. 2000. Recapture of Ips typographus L. (Col., Scolytidae) with attractants of low release rates: localized dispersion and environmental influences. Agricultural and Forest Entomology 2: 259–70Google Scholar
Furniss, M.M. 1959. Reducing Douglas-fir beetle damage—How it can be done. USDA Forest Service Research Note Intermountain Forest and Range Experiment Station 70Google Scholar
Furniss, M.M., Kline, L.N., Schmitz, R.F., Rudinsky, J.A. 1972. Tests of three pheromones to induce or disrupt aggregation of Douglas-fir beetles (Coleoptera: Scolytidae) on live trees. Annals of the Entomological Society of America 65: 1227–32CrossRefGoogle Scholar
Furniss, M.M., Livingston, R.L., McGregor, M.D. 1981. Development of a stand susceptibility classification for Douglas-fir beetle. pp 115–28 in Hedden, R.L., Barras, S.J., Coster, J.E. (Technical Coordinators), Hazard-Rating Systems in Forest Insect Pest Management: Symposium Proceedings. US Forest Service General Technical Report WO-27Google Scholar
Jantz, O.K., Johnsey, R.L. 1964. Determination of sex of the Douglas-fir beetle Dendroctonus pseudotsugae Hopkins (Coleoptera: Scolytidae). The Canadian Entomologist 96: 1327–9Google Scholar
Kinzer, G.W., Fentiman, A.F. Jr, Foltz, R.L., Rudinsky, J.A. 1971. Bark beetle attractants: 3-methyl-2-cyclohexen-1-one isolated from Dendroctonus pseudotsugae. Journal of Economic Entomology 64: 970–1CrossRefGoogle Scholar
Libbey, L.M., Oehlschlager, A.C., Ryker, L.C. 1983. 1-Methylcyclohex-2-en-1-ol as an aggregation pheromone of Dendroctonus pseudotsugae. Journal of Chemical Ecology 9: 1533–41Google Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist 115: 299302Google Scholar
Linton, D.A., Safranyik, L., McMullen, L.H., and Betts, R. 1987. Field techniques for rearing and marking mountain pine beetle for use in dispersal studies. Journal of the Entomological Society of British Columbia 84: 53–7Google Scholar
Mason, L.J., Jansson, R.K., Heath, R.R. 1990. Sampling range of male sweetpotato weevils (Cylas formicarius elegantulus) (Summers) (Coleoptera: Curculionidae) to pheromone traps: influence of pheromone dosage and lure age. Journal of Chemical Ecology 16: 2493–502Google Scholar
McGregor, M.D., Furniss, M.M., Oakes, R.D., Gibson, K.E., Meyer, H.E. 1984. MCH pheromone for preventing Douglas-fir beetle infestation in windthrown trees. Journal of Forestry 82: 613–6Google Scholar
McMullen, L.H., Safranyik, L., Linton, D.A., Betts, R. 1988. Survival of self-marked mountain pine beetles emerged from logs dusted with fluorescent powder. Journal of the Entomological Society of British Columbia 85: 25–8Google Scholar
Negron, J.F. 1998. Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado front range. Forest Ecology and Management 107: 7185Google Scholar
Pitman, G.P., Vité, J.P. 1970. Field response of Dendroctonus pseudotsugae (Coleoptera: Scolytidae) to synthetic frontalin. Annals of the Entomological Society of America 63: 661–4Google Scholar
Randall, C., Tensmeyer, G. 1999. Douglas-fir beetle hazard rating system using the Oracle database and the forest service IBM platform. USDA Forest Service Forest Health Protection Report 99–6Google Scholar
Ross, D.W., Daterman, G.E. 1994. Reduction of Douglas-fir beetle infestation of high risk stands by antiaggregation and aggregation pheromones. Canadian Journal of Forest Research 24: 2184–90CrossRefGoogle Scholar
Ross, D.W., Daterman, G.E. 1995 a. Efficacy of an antiaggregation pheromone for reducing Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Scolytidae), infestation of high risk stands. The Canadian Entomologist 127: 805–11Google Scholar
Ross, D.W., Daterman, G.E. 1995 b. Response of Dendroctonus pseudotsugae (Coleoptera: Scolytidae) and Thanasimus undatulus (Coleoptera: Cleridae) to traps with different semiochemicals. Journal of Economic Entomology 88: 106–11Google Scholar
Ross, D.W., Daterman, G.E. 1997 a. Integrating pheromone and silvicultural methods for managing the Douglas-fir beetle. pp 135–45 in Grégoire, J.C., Liebhold, A.M., Stephen, F.M., Day, K.R., Salom, S.M. (Eds), Proceedings Integrating Cultural Tactics into the Management of Bark Beetle and Reforestation Pests. USDA Forest Service General Technical Report NE-236Google Scholar
Ross, D.W., Daterman, G.E. 1997 b. Using pheromone-baited traps to control the amount and distribution of tree mortality during outbreaks of the Douglas-fir beetle. Forest Science 43: 6570Google Scholar
Ross, D.W., Daterman, G.E. 1998. Pheromone-baited traps for Dendroctonus pseudotsugae (Coleoptera: Scolytidae): influence of selected release rates and trap designs. Journal of Economic Entomology 91: 500–6Google Scholar
Rudinsky, J.A. 1963. Response of Dendroctonus pseudotsugae Hopkins to volatile attractants. Contributions from Boyce Thompson Institute 22: 2338Google Scholar
Rudinsky, J.A.. Morgan, M.E., Libbey, L.M., Putnam, T.B. 1974. Additional components of the Douglas-fir beetle (Coleoptera: Scolytidae) aggregative pheromone and their possible utility in pest control. Journal of Applied Entomology 76: 6577Google Scholar
Safranyik, L., Linton, D.A., Silversides, R., McMullen, L.H. 1992. Dispersal of released mountain pine beetles under the canopy of a mature lodgepole pine stand. Journal of Applied Entomology 113: 441–50Google Scholar
Salom, S.M., McLean, J.A. 1990. Dispersal of Trypodendron lineatum (Oliver) within a valley setting. The Canadian Entomologist 122: 4358Google Scholar
Salom, S.M., McLean, J.A. 1991 a. Environmental influences on dispersal of Trypodendron lineatum (Coleoptera: Scolytidae). Environmental Entomology 20: 565–76Google Scholar
Salom, S.M., McLean, J.A. 1991 b. Flight behavior of scolytid beetle in response to semiochemicals at different wind speeds. Journal of Chemical Ecology 17: 647–61CrossRefGoogle ScholarPubMed
Schlyter, F. 1992. Sampling range, attraction range, and effective attraction radius: estimates of trap efficiency and communication distance in coleopteran pheromone and host attractant systems. Journal of Applied Entomology 114: 439–54CrossRefGoogle Scholar
Schlyter, F., Byers, J.A., Löfqvist, J. 1987. Attraction to pheromone sources of different quantity, quality, and spacing: density-regulation mechanisms in bark beetle Ips typographus. Journal of Chemical Ecology 13: 1503–23CrossRefGoogle Scholar
Schmitz, R.F., Gibson, K.E. 1996. Douglas-fir beetle. USDA Forest Service Forest Insect and Disease Leaflet 5Google Scholar
Shore, T.L., McLean, J.A. 1988. The use of mark-recapture to evaluate a pheromone-based mass trapping program for ambrosia beetles in a sawmill. Canadian Journal of Forest Research 18: 1113–7CrossRefGoogle Scholar
Shore, T.L., Safranyik, L., Ferguson, M., Castonguay, J., Riel, W.G. 1999. Evaluation of factors affecting tree and stand susceptibility to the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Scolytidae). The Canadian Entomologist 131: 831–9Google Scholar
Van der Kraan, C., Van Deventer, P. 1982. Range of action and interaction of pheromone traps for the summerfruit tortrix moth, Adoxophyes orana (F.v.R.). Journal of Chemical Ecology 8: 1251–63Google Scholar
Vité, J.P., Gara, R.I. 1962. Volatile attractants from ponderosa pine attacked by bark beetles (Coleoptera: Scolytidae). Contributions of the Boyce Thompson Institute 21: 251–73Google Scholar
Wall, C., Perry, J.N. 1978. Interactions between pheromone traps for the pea moth, Cydia nigricana (F.). Entomologia Experimentalis et Applicata 24: 155–62Google Scholar
Wall, C., Perry, J.N. 1980. Effects of spacing and trap number on interactions between pea moth pheromone traps. Entomologia Experimentalis et Applicata 28: 313–21Google Scholar
Wall, C., Perry, J.N. 1981. Effects of dose and attractant on interactions between pheromone traps for the pea moth, Cydia nigricana. Entomologia Experimentalis et Applicata 30: 2630Google Scholar
Wall, C., Perry, J.N. 1987. Range of action of moth sex-attractant sources. Entomologia Experimentalis et Applicata 44: 514Google Scholar
Werner, R.A., Holsten, E.H. 1997. Dispersal of the spruce beetle, Dendroctonus rufipennis, and the engraver beetle, Ips perturbatus, in Alaska. US Forest Service Research Paper PNW-RP-501Google Scholar
Wood, D.L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annual Review of Entomology 27: 411–46Google Scholar