Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T15:53:49.596Z Has data issue: false hasContentIssue false

Modelling seasonality of gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), to evaluate probability of its persistence in novel environments

Published online by Cambridge University Press:  31 May 2012

J. Régnière*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 3800, Sainte-Foy, Quebec, Canada GlV 4C7
V. Nealis
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 3800, Sainte-Foy, Quebec, Canada GlV 4C7
*
1Corresponding author (e-mail: jregnier@nrcan.gc.ca).

Abstract

The predictions of three published models of temperature-dependent egg hatch of the European strain of the gypsy moth, Lymantria dispar L., were compared with observed hatch rates of caged egg masses in Victoria, British Columbia, Canada. Two of the three models gave a good fit to observations. Both of these models considered explicitly the period between oviposition in the summer of one year and hatch of neonates the following spring. When combined with models for temperature-dependent development of larvae and pupae, and adult longevity, the seasonal life history of an entire generation of gypsy moth could be simulated. These composite models predict the seasonal occurrence of all life stages of the insect. The simulated flight period of adult male gypsy moth on Vancouver Island in 1998 compared favourably with observed captures in pheromone traps. A series of gypsy moth generations was simulated using daily temperature inputs reconstructed from climatic normals (period 1961–1990) at various locations on the south coast and southern interior of British Columbia where gypsy moth has been frequently introduced but is not established. These simulations provided estimates of the probability of a persistent population resulting from a predicted stable seasonality of the gypsy moth. The highest probabilities of persistence were in coastal areas along the Strait of Georgia between Vancouver Island and the continental mainland and in southern interior valleys below approximately 500-m elevation (above sea level). Outside these regions, normal climatic profiles resulted in an unstable seasonality for gypsy moth with increasingly late oviposition dates, and subsequent problems in synchronizing initiation and completion of winter diapause with appropriate ambient conditions. The phenology models discussed here can be and were used as decision-support tools either to improve the efficiency of pest management operations (sampling, pesticide applications) or to make better decisions concerning the need for eradication of the gypsy moth in novel environments.

Résumé

Les prédictions de trois modèles publiés de développement des oeufs de la race européenne de la spongieuse, Lymantria dispar L., ont été comparées à des observations du taux d'éclosion de masses d'oeufs en cage à Victoria, Colombie-Britannique, Canada. Deux des trois modèles avaient un bon ajustement aux données. Ces deux modèles prennent explicitement en considération la période entre l'oviposition en été et l'éclosion au printemps suivant. Lorsque ces modèles d'éclosion ont été combinés avec des modèles de développement des larves, des chrysalides et des adultes, la saisonnalité d'une génération entière de la spongieuse a pu être simulée. Ces modèles composés prédisent l'apparition saisonnière de tous les stades de l'insecte. La période de vol simulée pour l'île de Vancouver en 1998 se compare favorablement avec les captures enregistrées dans des pièges à phéromones. Des suites de générations de la spongieuse ont été simulées avec comme intrants des températures quotidiennes reconstituées à partir de normales climatiques (période 1960–1991) provenant de diverses localités de la côte sud et de l'intérieur sud de la Colombie-Britannique où la spongieuse a été fréquemment introduite, mais où elle n'est pas encore établie. Ces simulations ont fourni des estimés de la probabilité qu'une population puisse y persister dû à une saisonnalité stable de l'insecte. Les plus fortes probabilités de persistance ont été trouvées dans les régions côtières le long du détroit de Georgie entre l'île de Vancouver et le continent, ainsi que dans les vallées du sud de l'intérieur en dessous de 500 m d'altitude (au-dessus du niveau de la mer). En dehors de ces régions, les profils climatiques normaux ont résulté en une saisonnalité instable chez la spongieuse, avec des dates d'oviposition de plus en plus tardives et des problèmes subséquents à synchroniser l'initiation et la terminaison de la diapause hivernale avec les conditions environnementales appropriées. Les modèles de phénologie discutés ici peuvent être et ont été utilisés comme outils d'aide à la prise de décisions soit pour améliorer l'efficacité des programmes de lutte (échantillonnage, application d'insecticides), soit pour la prise de décisions concernant le besoin d'éradication de la spongieuse dans de nouveaux environnements.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology 5: 388–96CrossRefGoogle Scholar
Bierl, B.A., Beroza, M., Collier, C.W. 1970. Potent sex attractant of the gypsy moth: its isolation, identification, and synthesis. Science (Washington DC) 170: 87–9CrossRefGoogle Scholar
Elkinton, J.S., Cardé, R.T. 1980. Distribution, dispersal, and apparent survival of male gypsy moths as determined by capture in pheromone-baited traps. Environmental Entomology 9: 729–37CrossRefGoogle Scholar
Elkinton, J.S., Liebhold, A.M. 1990. Population dynamics of gypsy moth in North America. Annual Review of Entomology 35: 571–96CrossRefGoogle Scholar
Gilbert, N., Gutierrez, A.P., Frazer, B.D., Jones, R.E. 1976. Ecological relationships. Reading, United Kingdom: WH Freeman and CoGoogle Scholar
Gray, D.R., Logan, J.A., Ravlin, F.W., Carlson, J.A. 1991. Toward a model of gypsy moth egg phenology: using respiration rates of individual eggs to determine temperature–time requirements of prediapause development. Environmental Entomology 20: 1645–52CrossRefGoogle Scholar
Gray, D.R., Ravlin, F.W., Régnière, J., Logan, J.A. 1995. Further advances toward a model of gypsy moth (Lymantria dispar (L.)) egg phenology: respiration rates and thermal responsiveness during diapause, and age-dependent developmental rates in postdiapause. Journal of Insect Physiology 41: 247–56CrossRefGoogle Scholar
Gray, D.R., Ravlin, F.W., Braine, J.A. 2001. Diapause in the gypsy moth: a model of inhibition and development. Journal of Insect Physiology 47: 173–84CrossRefGoogle Scholar
Humble, L., Stewart, A.J. 1994. Gypsy moth. Forest Pest Leaflet 75. Canada – British Columbia Partnership Agreement on Forest Resource Development, Cat. No. Fo29-6/75-1994E. Victoria, British Columbia: CFS–PFCGoogle Scholar
Hunter, A.F. 1993. Gypsy moth population sizes and the window of opportunity in spring. Oikos 68: 531–8CrossRefGoogle Scholar
Hunter, A.F., Lindgren, B.S. 1995. Range of gypsy moth in British Columbia: a study of climatic suitability. Journal of the Entomological Society of British Columbia 92: 4555Google Scholar
Isaaks, H.E., Srivastava, R.M. 1989. An introduction to applied geostatistics. New York: Oxford University PressGoogle Scholar
Johnson, P.C., Mason, D.P., Radke, S.L., Tracewski, K.T. 1983. Gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), egg eclosion: degree-day accumulation. Environmental Entomology 12: 929–32CrossRefGoogle Scholar
Leonard, D.E. 1972. Survival in a gypsy moth population exposed to low winter temperatures. Environmental Entomology 1: 549–54CrossRefGoogle Scholar
Liebhold, A.M., Halverson, J.A., Elmes, G.A. 1992. Gypsy moth invasion in North America: a quantitative analysis. Journal of Biogeography 19: 513–20CrossRefGoogle Scholar
Logan, J.A., Powell, J.A. 2001. Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist 47: 160–73CrossRefGoogle Scholar
Logan, J.A., Casagrande, R.A., Liebhold, A.M. 1991. Modeling environment for simulation of gypsy moth (Lepidoptera: Lymantriidae) larval phenology. Environmental Entomology 20: 1516–25CrossRefGoogle Scholar
Lyons, D.B., Lysyk, T.J. 1989. Development and phenology of eggs of gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), in Ontario. pp 351–65 in Wallner, W.E., McManus, K.A. (Eds), Lymantriidae: A comparison of features of New and Old World tussock moths. USDA Forest Service General Technical Report NE-123Google Scholar
Nalder, I.A., Wein, R.W. 1998. Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology 92: 211–25CrossRefGoogle Scholar
Nealis, V.G., Roden, P.M., Ortiz, D.A. 1999. Natural mortality of the gypsy moth along a gradient of infestation. The Canadian Entomologist 131: 507–19CrossRefGoogle Scholar
Nealis, V.G., Régnière, J., Gray, D.R. 2001. Modeling seasonal development of Gypsy moth in a novel environment for decision-support of an eradication program. USDA Forest Service General Technical Report NE-277Google Scholar
Nealis, V.G., Carter, N., Kenis, M., Quednau, F.W., van Frankenhuyzen, K., Quednau, F.W., Kenis, M., Carter, N. 2002. Lymantria dispar (L.), Gypsy moth (Lepidoptera: Lymantriidae). pp 159–68 in Mason, P.G., Huber, J.T. (Eds), Biological control programmesss in Canada, 1981–2000. Wallingford, United Kingdom: CAB International PublishingGoogle Scholar
Régnière, J. 1996. Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environmental Entomology 25: 869–81CrossRefGoogle Scholar
Régnière, J., Bolstad, P. 1994. Statistical simulation of daily air temperature patterns in eastern North America to forecast seasonal events in insect pest management. Environmental Entomology 23: 1368–80CrossRefGoogle Scholar
Régnière, J., Sharov, A. 1998. Phenology of Lymantria dispar (Lepidoptera: Lymantriidae), male flight and the effect of dispersal in heterogeneous landscapes. International Journal of Biometeorology 41: 161–8Google Scholar
Régnière, J., Sharov, A. 1999. Simulating temperature-dependent ecological processes at the sub-continental scale: male gypsy moth flight phenology as an example. International Journal of Biometeorology 42: 146–52Google Scholar
Régnière, J., Cooke, B.J., Bergeron, V. 1996. BioSIM: a computer-based decision support tool for seasonal planning of pest management activities. User's manual. Canadian Forest Service Information Report LAU-X-155Google Scholar
Sanderson, E.D., Peairs, L.M. 1913. The relation of temperature to insect life. 1. The variation in velocity of development at different constant temperatures. New Hampshire Agricultural Experiment Station Technical Bulletin 7Google Scholar
Sawyer, A.J., Tauber, M.J., Tauber, C.A., Ruberson, J.R. 1993. Gypsy moth (Lepidoptera: Lymantriidae) egg development: a simulation analysis of laboratory and field data. Ecological Modelling 66: 121–55CrossRefGoogle Scholar
Sharov, A.A., Liebhold, A.M., Ravlin, F.W. 1995. Prediction of gypsy moth (Lepidoptera: Lymantriidae) mating success from pheromone trap counts. Environmental Entomology 24: 1239–44CrossRefGoogle Scholar
Sharov, A.A., Pijanowski, B.C., Liebhold, A.M., Gage, S.H. 1999. What affected the rate of gypsy moth (Lepidoptera: Lymantriidae) spread in Michigan: winter temperature or forest susceptibility? Journal of Agricultural and Forest Entomology 1: 3745CrossRefGoogle Scholar
Sheehan, K.A. 1992. User's guide for GMPHEN: gypsy moth phenology model. USDA Forest Service General Technical Report NE-158Google Scholar
Sullivan, C.R., Wallace, D.R. 1972. The potential northern dispersal of the gypsy moth, Porthetria dispar (Lepidoptera: Lymantriidae). The Canadian Entomologist 104: 1349–55CrossRefGoogle Scholar
Tauber, M.J., Tauber, C.A., Masaki, S. 1986. Seasonal adaptations of insects. New York: Oxford University PressGoogle Scholar
Tauber, M.J., Tauber, C.A., Ruberson, J.R., Tauber, A.J., Abrahamson, L.P. 1990. Dormancy in Lymantria dispar (Lepidoptera: Lymantriidae): analysis of photoperiodic and thermal responses. Annals of the Entomological Society of America 83: 494503CrossRefGoogle Scholar
Waggoner, P.E. 1984. The hatching of gypsy moth eggs, a phenological model. Agricultural and Forest Meteorology 33: 5365CrossRefGoogle Scholar
Williams, D.W., Fuester, R.W., Metterhouse, W.W., Balaam, R.J., Bullock, R.H., Chianese, R.J., Reardon, R.C. 1990. Density, size, and mortality of egg masses in New Jersey populations of the gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology 19: 943–8CrossRefGoogle Scholar
Wolda, H. 1988. Insect seasonality: why? Annual Review of Ecology and Systematics 19: 118CrossRefGoogle Scholar
Worner, S.P. 1992. Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Environmental Entomology 21: 689–99CrossRefGoogle Scholar