Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-cs4hf Total loading time: 14.552 Render date: 2021-04-18T05:54:11.191Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The genetic population structure of lotic and lentic mayflies of the Baetis vernus group (Ephemeroptera: Baetidae)

Published online by Cambridge University Press:  09 August 2012

Abstract

Nymphs of lotic mayflies live in environments that are expected to give rise to different degrees of population structuring. Here we investigate two taxa adapted to different lifestyles. Baetis macani Kimmins (Ephemeroptera: Baetidae) lives in flowing water; brooks that may periodically dry out in the summer or freeze to the bottom in winter. Baetis jaervii Savolainen is mostly found in sedge belts along the shores of lakes. Most insects living in flowing water show low levels of among-population genetic differentiation within and among catchments. Levels of differentiation in the lotic species are therefore assumed to be lower than in lentic B. jaervii. Here we test this hypothesis. Mitochondrial DNA and allele frequencies of nuclear genes were used to detect population structure in specimens originating from an extensive area from northern Finland. The genetic differentiation among populations of the lotic B. macani is more than twice the corresponding value for the lentic B. jaervii (FST 0.33 versus 0.15, while the mean FST between species was 0.33 and significant). The result is congruent within the cytochrome c oxidase subunit I gene (COI) partial gene frequencies. We argue that the significant genetic population structure, which only was found in the lotic B. macani, is differentiated as a consequence to the unpredictable environment as contrasted to the stable environment in standing bodies of water.

Résumé

Les larves d’éphémères des eaux courantes vivent dans des environnements qu'on croit devoir provoquer divers degrés de structuration de la population. Nous examinons ici deux taxons adaptés à des styles de vie différents. Baetis macani Kimmins (Ephemeroptera: Baetidae) vit en eau courante, dans des ruisseaux qui peuvent s'assécher périodiquement en été ou geler jusqu'au fond en hiver. Baetis jaervii Savolainen se retrouve surtout dans les ceintures de laîches le long des rives des lacs. La plupart des insectes qui vivent en eau courante possèdent de faibles niveaux de différenciation génétique au sein des populations dans un même bassin versant et entre les bassins. On présume donc que les niveaux de différenciation de l'espèce d'eau courante sont plus bas que ceux de B. jaervii qui vit en eau stagnante. Nous testons cette hypothèse. L'ADN mitochondrial et les fréquences alléliques des gènes nucléaires nous ont servi à déterminer la structure de population chez des spécimens provenant d'une grande région du nord de la Finlande. La différenciation génétique dans les populations de l'espèce lotique B. macani est plus de deux fois plus élevée que la valeur correspondante chez l'espèce lentique B. jaervii (FST 0,33 par rapport à 0,15, alors que le FST moyen entre les espèces est 0,33 et significatif). Ce résultat est compatible avec les fréquences partielles des gènes dans le cas de la sous-unité 1 du gène de la cytochrome c oxydase (COI). Nous croyons que la structure génétique significative de population, qui se retrouve seulement chez l'espèce lotique B. macani, se développe à cause de l'environnement imprévisible, alors que l'environnement est stable dans les plans d'eau stagnante.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Bauernfeind, E. Humpesch, U.H. 2001. Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ökologie. Verlag des Naturhistorischen Museums Wien, Vienna.Google Scholar
Bilton, D.T., Freeland, J.R., Okamura, B. 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics, 32: 159181.CrossRefGoogle Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics, 10: 295304.CrossRefGoogle Scholar
Brittain, J.E. 1975. The life cycle of Baetis macani Kimmins (Ephemerida) in a Norwegian mountain biotope. Entomologica Scandinavica, 6: 4751.CrossRefGoogle Scholar
Brodin, T., Johansson, F., Bergsten, J. 2006. Predator related oviposition site selection of aquatic beetles (Hydroporus spp.) and effects on offspring life-history. Freshwater Biology, 51: 12771285.CrossRefGoogle Scholar
Corkum, L.D. 1987. Patterns in mayfly (Ephemeroptera) wing length: adaptation to dispersal? The Canadian Entomologist, 119: 783790.CrossRefGoogle Scholar
Drotz, M.K. 2003. Speciation and mitochondrial DNA diversification of the diving beetles Agabus bipustulatus and A. wollastoni (Coleoptera, Dytiscidae) within the Macaronesian Archipelago. Biological Journal of the Linnean Society, 79: 653666.CrossRefGoogle Scholar
Drotz, M.K., Nilsson, A.N., Saura, A. 2001. The species delimitation problem applied to the Agabus bipustulatus complex (Coleoptera, Dytiscidae) in north Scandinavia. Biological Journal of the Linnean Society, 73: 1122.CrossRefGoogle Scholar
Drotz, M.K., Savolainen, E., Saura, A., Ståhls, G. 2012. Supplementary material to Drotz, M.K., Savolainen, E., Saura, A. & Ståhls, G. 2012: The genetic population structure of lotic and lentic mayflies of the Baetis vernus group (Ephemeroptera: Baetidae) [online]. Available from http://www.kuopionluonnontieteellinenmuseo.fi/publications/ [accessed 6 February 2012].CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytpchrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294299.Google Scholar
Giberson, D.J., Burian, S.K., Shouldice, M. 2007. Life history of the northern mayfly, Baetis bundyae in Rankin Inlet, Nunavut, Canada, with updates to the list of mayflies of Nunavut. The Canadian Entomologist, 139: 628642.CrossRefGoogle Scholar
Goloboff, P.A. 1999. NONA, version 2.0 (32 bit version) [online]. Available from http://www.cladistics.com/aboutNona.htm [accessed 6 February 2006].Google Scholar
Goudet, J. 1999. PCA-GEN, version 1.2 [online]. Available from http://www2.unil.ch/popgen/softwares/pcagen.htm [accessed 5 February 2006].Google Scholar
Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3) [online]. Available from http://www2.unil.ch/popgen/softwares/fstat.htm [accessed 5 February 2006].Google Scholar
Goudet, J., de Meeüs, T., Day, J.A., Gliddon, J.C. 1994. The different level of population structuring of the Dogwhelk Nucella lapillus, along the south Devon coast. In Genetics and evolution of aquatic organisms. Edited by R.A. Beaumont. Chapman & Hall, London, United Kingdom. pp. 8195.Google Scholar
Goudet, J., Raymond, M., de Meeus, T., Rousset, F. 1996. Testing differentiation in diploid populations. Genetics, 144: 19331940.Google ScholarPubMed
Hamilton, W.J. 1971. Selection of selfish and altruistic behaviour in some extreme models. In Man and beast: comparative social behaviour. Edited by J. Eisenberg and W. Dillon. Smithsonian Institution, Washington, United States of America. pp. 5791.Google Scholar
Hughes, J.M., Bunn, S.E., Cleary, C., Hurwood, D.A. 2000. A hierarchical analysis of the genetic structure of an aquatic insect Bungona (Baetidae: Ephemeroptera). Heredity, 85: 561570.CrossRefGoogle Scholar
Hughes, J.M., Mather, P.B., Hillyer, M.J., Cleary, C., Peckarsky, B. 2003. Genetic structure in montane mayfly Baetis bicaudatus (Ephemeroptera: Baetidae), from the Rocky Mountains, Colorado. Freshwater Biology, 48: 21492162.CrossRefGoogle Scholar
Johansson, A. Nilsson, A.N. 1994. Insects of a small aestival stream in northern Sweden. Hydrobiologia, 294: 1722.CrossRefGoogle Scholar
Lehmkuhl, D.M. 1973. A new species of Baetis (Ephemeroptera) from ponds in the Canadian Arctic, with biological notes. The Canadian Entomologist, 105: 343346.CrossRefGoogle Scholar
Monaghan, M.T., Gatblliat, J.-L., Sartori, M., Elouard, J.-M., James, H., Derleth, P., et al. 2005. Trans-oceanic and endemic origins of the small minnow mayflies (Ephemeroptera; Baetidae) of Madagascar. Proceedings of the Royal Society B, 272: 18291836.CrossRefGoogle Scholar
Monaghan, M.T., Spaak, P., Robinson, C.T., Ward, J.V. 2001. Genetic differentiation of Baetis alpinus Pictet (Ephemeroptera: Baetidae) in fragmented alpine streams. Heredity, 86: 395403.CrossRefGoogle ScholarPubMed
Monaghan, M.T., Spaak, P., Robinson, C.T., Ward, J.V. 2002. Population genetic structure of 3 alpine stream insects: influences of gene flow, demographics, and habitat fragmentation. Journal of the North American Benthological Society, 21: 114131.CrossRefGoogle Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583590.Google ScholarPubMed
Nixon, K.C. 2002. WinClada (version 1.00.08) [online]. Available from http://www.cladistics.com/aboutWinc.htm [accessed 7 May 2002].Google Scholar
Reynolds, J., Weir, B.S., Cockerham, C.C. 1983. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics, 105: 767779.Google ScholarPubMed
Ribera, I., Barraclough, G.T., Vogler, A.P. 2001. The effect of habitat type on speciation rates and range movements in aquatic beetles: inferences from species-level phylogenies. Molecular Ecology, 10: 721735.CrossRefGoogle ScholarPubMed
Russev, B.K. 1973. Kompensationsflug bei der Ordnung Ephemeroptera. In Proceedings of the First International Conference on Ephemeroptera. Edited by W.L. Peters and J.G. Peters. E.J. Brill, Leiden, Netherlands. pp. 132142.Google Scholar
Savolainen, E. 1978. Swarming in Ephemeroptera: the mechanism of swarming and the effects of illumination and weather. Annales Zoologici Fennici, 15: 1752.Google Scholar
Savolainen, E. 2009a. Baetis jaervii sp. n. (Ephemeroptera: Baetidae) from northern Europe. Entomologica Fennica, 20: 182185.CrossRefGoogle Scholar
Savolainen, E. 2009b. Distribution of mayflies (Ephemeroptera) in Finland. Kulumus, 15: 135 (in Finnish).Google Scholar
Savolainen, E., Drotz, M.K., Hoffsten, P.-O., Saura, A. 2007. The Baetis vernus group (Ephemeroptera, Baetidae) of northernmost Europe: an evidently diverse but poorly understood group of mayflies. Entomologica Fennica, 18: 160167.CrossRefGoogle Scholar
Savolainen, E. Saaristo, M.I. 1981. Distribution of mayflies (Ephemeroptera) in the biological province of Kuusamo (Ks), Finland. Notulae Entomologicae, 61: 117124.Google Scholar
Savolainen, E., Saura, A., Hantula, J. 1993. Mode of swarming in relation to reproductive isolation in mayflies. Evolution, 47: 17961804.CrossRefGoogle ScholarPubMed
Schmidt, S.K., Hughes, J.M., Bunn, S.E. 1995. Gene flow among conspecific populations of Baetis sp. (Ephemeroptera): adult flight and larval drift. Journal of the North American Benthological Society, 14: 147157.CrossRefGoogle Scholar
Southwood, T.R.E. 1962. Migration of terrestrial arthropods in relation to habitat. Biological Reviews, 37: 171214.CrossRefGoogle Scholar
Ståhls, G. Savolainen, E. 2008. MtDNA COI barcodes reveal cryptic diversity in the Baetis vernus group (Ephmeroptera, Baetidae). Molecular Phylogenetics and Evolution, 46: 8287.CrossRefGoogle Scholar
Swofford, D.L. Selander, R.K. 1981. BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity, 72: 281283.CrossRefGoogle Scholar
Syselman, E.C. 1980. The mechanisms that maintain population stability of selected species of Ephemeroptera in a temperate stream. In Advances in Ephemeroptera biology. Edited by J.F. Flannangan and K.E. Marshall. Plenum Press, New York and London. pp. 309319.CrossRefGoogle Scholar
Thomas, A.G.B. 1975. Éphéméroptères du sud-ouest de la France. I. Migrations d'images à haute altitude. Annales de Limnologie, 11: 4766.CrossRefGoogle Scholar
Wagner, D.L. Liebherr, J.K. 1992. Flightlessness in insects. Trends in Ecology and Evolution, 7: 216220.CrossRefGoogle ScholarPubMed
Weir, B.S. Cockerham, C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 13581370.Google ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 39 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The genetic population structure of lotic and lentic mayflies of the Baetis vernus group (Ephemeroptera: Baetidae)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The genetic population structure of lotic and lentic mayflies of the Baetis vernus group (Ephemeroptera: Baetidae)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The genetic population structure of lotic and lentic mayflies of the Baetis vernus group (Ephemeroptera: Baetidae)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *