Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T09:50:37.402Z Has data issue: false hasContentIssue false

THE ADVANTAGE OF SHORT TONGUES IN BUMBLE BEES (BOMBUS) — ANALYSES OF SPECIES DISTRIBUTIONS ACCORDING TO FLOWER COROLLA DEPTH, AND OF WORKING SPEEDS ON WHITE CLOVER

Published online by Cambridge University Press:  31 May 2012

C.M.S. Plowright
Affiliation:
School of Psychology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
R.C. Plowright
Affiliation:
Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 1Al

Abstract

Four surveys of Bombus workers found on various flower species generated classifications of bumble bees according to tongue length and corolla depth of flower species. The long-tongued bees frequented species with long corollas and short-tongued bees frequented species with short corollas. Within-species analyses revealed several significant positive correlations between tongue length and corolla depth. The advantage of short tongues in bumble bees was investigated in an analysis of working speeds of different species on white clover, which has a short corolla. Bees with short tongues were more efficient than bees with long tongues.

Résumé

Quatre inventaires des ouvrières de Bombus trouvées sur différentes espèces de fleurs ont permis d’obtenir des classifications des bourdons basées sur la longueur du proboscis et la profondeur de la corolle des fleurs. Les espèces à proboscis long fréquentent les fleurs à corolles profondes et les espèces à proboscis court visitent les fleurs à corolles peu profondes. Les analyses ont mis en lumière plusieurs corrélations significatives positives entre la longueur du proboscis et la profondeur de la corolle. Les avantages d’un proboscis court ont été évalués par une analyse de la vitesse de «travail» des différentes espèces dans des champs de trèfle blanc, une plante à corolle courte. Les bourdons à proboscis court sont plus efficaces que les bourdons à proboscis long.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, R.J., and Nelder, R.A.. 1978. The GLIM System, Release 3: Generalised Linear Interactive Modelling. Numerical Algorithms Group, Oxford, UK.Google Scholar
Barrow, D.A., and Pickard, R.S.. 1984. Size-related selection of food plants by bumblebees. Ecological Entomology 9: 369373.Google Scholar
Benedek, P. 1973. Relationship between the tripping rate and tongue length of luceme pollinated wild bees (Hym. Apoidea). Zeitschrift für Angewandte Entomologie 73: 113116.CrossRefGoogle Scholar
Brian, A.D. 1957. Differences in the flowers visited by four species of bumble bees and their causes. Journal of Animal Ecology 26: 7198.CrossRefGoogle Scholar
Dukas, R., and Shmida, A.. 1989. Correlation between the color, size and shape of Israeli crucifer flowers and relationships to pollinators. Oikos 54: 281286.CrossRefGoogle Scholar
Galen, C., and Blau, S.. 1988. Caste-specific patterns of flower visitation in bumble bees (Bombus kirbyellus) collecting nectar from Polemonium viscosum. Ecological Entomology 13: 1117.Google Scholar
Harder, L.D. 1982. Measurement and estimation of functional proboscis length in bumblebees (Hymenoptera; Apidae). Canadian Journal of Zoology 60: 10731079.CrossRefGoogle Scholar
Harder, L.D. 1983. Flower handling efficiency of bumble bees: Morphological aspects of probing time. Oecologia (Berlin) 57: 274280.CrossRefGoogle ScholarPubMed
Harder, L.D. 1985. Morphology as a predictor of flower choice by bumblebees. Ecology 66: 198210.Google Scholar
Harder, L.D. 1986. Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia (Berlin) 69: 309315.Google Scholar
Heinrich, B. 1976. Resource partitioning among some eusocial insects: Bumblebees. Ecology 57: 874889.CrossRefGoogle Scholar
Inouye, D.W. 1980. The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia (Berlin) 45: 197201.CrossRefGoogle ScholarPubMed
Inouye, D.W., and Pyke, G.H.. 1988. Pollination biology in the Snowy Mountains of Australia: Comparisons with montane Colorado, USA. Australian Journal of Ecology 13: 191210.CrossRefGoogle Scholar
Jennersten, O., Berg, L., and Lehman, C.. 1988. Phenological differences in pollinator visitation, pollen deposition and seed set in the sticky catchfly, Viscaria vulgaris. Journal of Ecology 76: 11111132.Google Scholar
Kugler, H. 1940. Die Bestaubung von Blumen durch Furchenbienen (Halictus Latr.). Planta 30: 780799.CrossRefGoogle Scholar
Morse, D.H. 1978. Size-related foraging differences of bumble bee workers. Ecological Entomology 3: 189192.CrossRefGoogle Scholar
Morse, D.H. 1979. Foraging rate, foraging position, and worker size in bumble bee workers. Proceedings of the IVth International Symposium on Pollination. Maryland Agricultural Experiment Station Special Miscellaneous Publication 1: 447452.Google Scholar
Plowright, R.C. 1987. Corolla depth and nectar concentration: An experimental study. Canadian Journal of Botany 65: 10111013.CrossRefGoogle Scholar
Plowright, R.C., Thomson, J.D., Lefkovitch, L.P., and Plowright, C.M.S.. 1993. An experimental study of the effect of colony resource manipulation on foraging for pollen by worker bumble bees (Hymenoptera: Apidae). Canadian Journal of Zoology 71: 13931396.CrossRefGoogle Scholar
Ranta, E. 1983. Foraging differences in bumblebees. Annales Zoologici Fennici 49: 1722.Google Scholar
Ranta, E., and Lundberg, H.. 1980. Resource partitioning in bumblebees: The significance of differences in proboscis length. Oikos 35: 298302.CrossRefGoogle Scholar