Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-03T01:54:52.140Z Has data issue: false hasContentIssue false

What groups were: A study of the development of the axiomatics of group theory

Published online by Cambridge University Press:  17 April 2009

Peter M. Neumann
Affiliation:
The Queen's College, Oxford OX1 4AW, United Kingdom
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is devoted to a historical study of axioms for group theory. It begins with the emergence of groups in the work of Galois and Cauchy, treats two lines of development discernible in the latter half of the nineteenth century, and concludes with a note about some twentieth century ideas. One of those nineteenth century lines involved Cayley, Dyck and Burnside; the other involved Kronecker, Weber (very strongly), Hölder and Frobenius.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Baer, R. and Levi, F., ‘Vollständige irreduzible Systeme von Gruppenaxiomen’, Sitzungsber. Akad. Wiss. Heidelberg, 2 (1932), 112.Google Scholar
[2]Birkhoff, G., ‘On the structure of abstract algebras’, Proc. Cambridge Philos. Soc., 31 (1935), 433454.CrossRefGoogle Scholar
[3]Bryce, R.A., ‘Ruffini and the quintic equation’, Symposia Mathematica 27 (Cortona, 1983), 169185.Google Scholar
[4]Burkhardt, Heinrich, ‘Die Anfänge der Gruppentheorie und Paolo Ruffini’, Zeitschr. fur Math, und Phys., 37 (1892), Supplement, pp. 119159.Google Scholar
[5]Burnside, W., ‘Notes on the theory of groups of finite order’, Proc. London Math. Soc., 26 (1895), 191214.Google Scholar
[6]Burnside, W., Theory of groups of finite order. (C.U.P., Cambridge 1897). (Second edition, Cambridge 1911; reprint: Dover Publications, New York 1955).Google Scholar
[7]Cassinet, Jean, ‘Paolo Ruffini (1765–1822): la résolution algébrique des équations et les groupes de permutations’, Boll. Storia Sci. Mat., 8 (1988), 2169.Google Scholar
[8]Cauchy, Augustin, ‘Sur le nombre des valeurs égales ou inézgales que peut acquérir une fonction de n variables indépendantes, quand on y permute ces variables entre elles d'une maniére quelconque’, C. R. Acad. Sci. Paris, 21 (1845), 593607 (15 Sept.) = Œuvres, 1st series, IX, 277–293.Google Scholar
[9]Cauchy, Augustin, ‘Mémoire sur l′es arrangements que Ton peut former avec des lettres données et sur les permutations ou substitutions à l'aide desquelles on passe d'un arrangement à un autre’, Exercices d'analyse et de physique mathématique, Vol III (dated Paris 1844: in fact published in‘livraisons’ from 1844 to 1846), pp. 151252 = Œuvres, 2nd series, XIII, 171–282.Google Scholar
[10]Cayley, A., ‘On the theory of groups, as depending on the symbolic equation θn = 1Phil. Mag. VII (1854), 40–47 = Mathematical Papers, Cambridge 1889–1898, Vol.11, Paper 125, pp. 123–130.Google Scholar
[11]Cayley, A., ‘On the theory of groups’, Proc. London Math. Soc., 9 (1878), 126133 = Mathematical Papers, Vol. X, Paper 690, pp. 324–330.Google Scholar
[12]Cayley, A., ‘Desiderata and suggestions: (1) The theory of groups’, Amer. J. Math., 1 (1878), 5052 = Mathematical Papers, Vol. X, Paper 694, pp. 401–403.CrossRefGoogle Scholar
[13]De Séguier, J.-A., Théorie des groupes finis: Éléments de la théorie des groupes abstraits. (Gauthier-Villars, Paris, 1904).Google Scholar
[14]Dyck, Walther, ‘Gruppentheoretische Studien’, Math. Annalen, 20 (1882), 144.CrossRefGoogle Scholar
[15]Dyck, Walther, ‘Gruppentheoretische Studien, II: Ueber die Zusammensetzung einer Gruppe discreter Operationen, über ihre Primitivität und Transitivität’, Math. Annalen, 22 (1883), 70108.CrossRefGoogle Scholar
[16]Edwards, Harold M., Galois theory. (Springer-Verlag, Berlin, Heidelberg, New York, 1984).Google Scholar
[17]Frobenius, G., ‘Neuer Beweis des Sylowschen Satzes’, J. f. d. reine u. angew. Math. (Crelle), 100 (1887), 179181 = Gesammelte Abhandlungen (Serre, J.P., Editor) (Springer-Verlag, Berlin, Heidelberg, New York 1968), Vol. 11, 301–303.Google Scholar
[18]Frobenius, G. and Stickelberger, L., ‘Über Gruppen von vertauschbaren Elementen’, J. f. d. reine u. angew. Math. (Crelle's Journal), 86 (1879), 217262 = Gesammelte Abhandlungen, Vol. I, 545–590.Google Scholar
[19]Galois, Évariste, ‘Œuvres mathématiques’ (edited by Liouville, J.), J. de math, pures et appl. (Liouville’s Journal), 11 (1846), 381444.Google Scholar
[20]Galois, Évariste. Écrits et mémoires mathématiques d'Évariste Galois. (Bourgne, Robert and Azra, J.-P., Editors) (Gauthier-Villars, Paris, 1962); reprinted with small alterations 1977.Google Scholar
[21]Higman, Graham and Neumann, B.H., ‘Groups as groupoids with one law’, Publ. Mathematicae, 2 (1952), 215221 = Selected works of B.H. Neumann and Hanna Neumann (6 volumes edited by Meek, D. S. and Stanton, R.G.), (Charles Babbage Research Centre, Winnipeg, 1988) Vol. 5, 1069–1075.Google Scholar
[22]Hölder, O., ‘Zurückführung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen’, Math. Annalen, 34 (1889), 2656.CrossRefGoogle Scholar
[23]Huntington, E.V., ‘Simplified definition of a group’, Bull. Amer. Math. Soc., 8 (1902), 296300.CrossRefGoogle Scholar
[24]Huntington, E.V., ‘A second definition of a group’, Bull. Amer. Math. Soc., 8 (1902), 388391.CrossRefGoogle Scholar
[25]Jordan, Camille, Traité des substitutions et des équations algébriques. (Gauthier-Villars, Paris, 1870) (reprints: Blanchard, Paris 1957; Gabay, Sceaux 1992).Google Scholar
[26]Jordan, Camille, Œuvres (4 volumes edited by Dieudonné, Jean), (Gauthier-Villars, Paris, 1961).Google Scholar
[27]Klein, Felix, ‘Vergleichende Betrachtungen über neuere geometrische Forschungen’ (The Erlanger Programm) in Gesammelte mathematische Abhandlungen (edited by Fricke, R. and Ostrowski, A.), (Springer, Berlin, 1921) Vol 1, pp. 460497.CrossRefGoogle Scholar
[28]Kronecker, L., ‘Auseinandersetzung einiger Eigenschaften der Klassenanzahl idealer complexer Zahlen’, Monatsber. Kön. Preuss. Akad. Wiss., Berlin, (1870), 881889 = Leopold Kronecker's Werke (Hensel, K., Editor), Leipzig 1895 (reprint: Chelsea company, New York 1968), Vol. 1, pp. 273–282.Google Scholar
[29]Ledermann, Walter, Introduction to the theory of finite groups. (Oliver and Boyd, Edinburgh, 1949).Google Scholar
[30]Meyer, Wilhelm Franz (editor), Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Erster Band: Arithmetik und Algebra. (Teubner, Leipzig, 18981904).Google Scholar
[31]Miller, George Abram, Collected works. Vol. 1 (University of Illinois, 1935).Google Scholar
[32]Moore, Eliakim Hastings, ‘A definition of abstract groups’, Trans. Amer. Math. Soc., 3 (1902), 485492.CrossRefGoogle Scholar
[33]Neumann, B.H., ‘Identical relations in groups’, Math. Annalen, 114 (1937), 506525 = Selected works of B.H. Neumann and Hanna Neumann (6 volumes edited by Meek, D.S. and Stanton, R.G.) (Charles Babbage Research Centre, Winnipeg, 1988) Vol. 1, 151–170.CrossRefGoogle Scholar
[34]Neumann, B.H., ‘Another single law for groups’, Bull. Australian Math. Soc., 23 (1981), 81102 = Selected works, Vol. 5, 1076–1097.Google Scholar
[35]Neumann, B.H., ‘Yet another single law for groups’, Illinois J. Maths, 30 (1986), 295300 = Selected works, Vol. 5, 1098–1103.Google Scholar
[36]Neumann, Peter M., ‘The context of Burnside's contributions to group theory’, The collected papers of William Burnside (2 volumes edited by Mann, A.J.S., Neumann, Peter M. and Tompson, J.C.) (Clarendon Press, Oxford) to appear.Google Scholar
[37]Pierpont, James, ‘Galois theory of algebraic equations. Part II. Irrational resolvents’, Annals of Math. (Series 2), 2 (19001901), 2256.CrossRefGoogle Scholar
[38]Serret, J.-A., Cours d’Algèbre Supérieure. Third edition: 2 Vols (Gauthier-Villars, Paris, 1866).Google Scholar
[39]Taton, René, ‘Sur les relations scientifiques d'Augustin Cauchy et d'Évariste Galois’, Revue d'histoire des sciences, 24 (1971), 123148.Google Scholar
[40]Weber, H., ‘Beweis des Satzes, dass jede eigentlich primitive quadratische Form unendlich viele Primzahlen darzustellen fähig ist’, Math. Annalen, 20 (1882), 301329.CrossRefGoogle Scholar
[41]Weber, Heinrich, Lehrbuch der Algebra. Vieweg und Sohn, Braunschweig: First edition (2 vols), 1895, 1896; Second edition: 2 vols and a third volume on elliptic functions, 1898, 1899, 1908.Google Scholar
[42]Wussing, Hans, Die Genesis des abstrakten Gruppenbegriffes. (Deutsche Verlag der Wissenschaften, Berlin 1969). English translation by Abe Schenitzer, The genesis of the abstract group concept (MIT Press, 1984).Google Scholar