Skip to main content Accessibility help
×
Home

UNIQUENESS THEOREMS FOR DIRICHLET SERIES

  • AI-DI WU (a1) and PEI-CHU HU (a2)

Abstract

We obtain uniqueness theorems for L-functions in the extended Selberg class when the functions share values in a finite set and share values weighted by multiplicities.

Copyright

Corresponding author

References

Hide All
[1]Frank, G. and Reinders, M., ‘A unique range set for meromorphic functions with 11 elements’, Complex Variables, Theory and Application 37 (1998), 185193.
[2]Fujimoto, H., ‘On uniqueness of meromorphic functions sharing finite sets’, Amer. J. Math. 122 (2000), 11751203.
[3]Gross, F., ‘Factorization of meromorphic functions and some problems’, in: Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, KY, 1976), Lecture Notes in Mathematics, 599 (Springer, Berlin, 1977), 5176.
[4]Hayman, W. K., Meromorphic Functions (Oxford University Press, Oxford, 1964).
[5]Li, B. Q., ‘A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation’, Adv. Math. 226 (2011), 41984211.
[6]Li, P. and Yang, C. C., ‘On the unique range set of meromorphic functions’, Proc. Amer. Math. Soc. 124 (1996), 177185.
[7]Mues, E. and Reinders, M., ‘Meromorphic functions sharing one value and unique range sets’, Kodai Math. J. 18 (1995), 515522.
[8]Steuding, J., ‘How many values can L-functions share?’, Fiz. Mat. Fak. Moksl. Semin. Darb. 7 (2004), 7081.
[9]Steuding, J., Value Distribution of L-Functions, Lecture Notes in Mathematics, 1877 (Springer, Berlin, 2007).
[10]Yang, C. C. and Yi, H. X., Uniqueness Theory of Meromorphic Functions (Science Press, Beijing, 2003).
[11]Yi, H. X., ‘Uniqueness of meromorphic functions and a question of Gross’, Sci. China Ser. A 24 (1994), 457466.
[12]Yi, H. X., ‘Unicity theorems for meromorphic or entire functions II’, Bull. Aust. Math. Soc. 52 (1995), 215224.
[13]Yi, H. X., ‘On a question of Gross concerning uniqueness of entire functions’, Bull. Aust. Math. Soc. 57 (1998), 343349.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed