Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T11:09:40.526Z Has data issue: false hasContentIssue false

TANGENT-FILLING PLANE CURVES OVER FINITE FIELDS

Published online by Cambridge University Press:  02 May 2023

SHAMIL ASGARLI
Affiliation:
Department of Mathematics and Computer Science, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA e-mail: sasgarli@scu.edu
DRAGOS GHIOCA*
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver BC V6T 1Z2, Canada

Abstract

We study plane curves over finite fields whose tangent lines at smooth $\mathbb {F}_q$-points together cover all the points of $\mathbb {P}^2(\mathbb {F}_q)$.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asgarli, S. and Ghioca, D., ‘Smoothness in pencils of hypersurfaces over finite fields’, Bull. Aust. Math. Soc. 107(1) (2023), 8594.CrossRefGoogle Scholar
Asgarli, S., Ghioca, D. and Yip, C. H., ‘Blocking sets arising from plane curves over finite fields’, Preprint, 2022, arXiv:2208.13299.Google Scholar
Asgarli, S., Ghioca, D. and Yip, C. H., ‘Most plane curves over finite fields are not blocking’, Preprint, 2022, arXiv:2211.08523.Google Scholar
Asgarli, S., Ghioca, D. and Yip, C. H., ‘Proportion of blocking curves in a pencil’, Preprint, 2023, arXiv:2301.06019.Google Scholar
Asgarli, S., Ghioca, D. and Yip, C. H., ‘Existence of pencils with nonblocking hypersurfaces’, Preprint, 2023, arXiv:2301.09215.CrossRefGoogle Scholar
Aubry, Y. and Perret, M., ‘A Weil theorem for singular curves’, in: Arithmetic, Geometry and Coding Theory (Luminy, 1993) (eds. Perret, M., Pellikaan, R. and Vladut, S. G.) (de Gruyter, Berlin, 1996), 17.Google Scholar
Barwick, S. and Ebert, G., Unitals in Projective Planes, Springer Monographs in Mathematics (Springer, New York, 2008).Google Scholar
Bayer, V. and Hefez, A., ‘Strange curves’, Comm. Algebra 19(11) (1991), 30413059.CrossRefGoogle Scholar
Beelen, P., Landi, L. and Montanucci, M., ‘Classification of all Galois subcovers of the Skabelund maximal curves’, J. Number Theory 242 (2023), 4672.CrossRefGoogle Scholar
Beelen, P. and Montanucci, M., ‘A new family of maximal curves’, J. Lond. Math. Soc. (2) 98(3) (2018), 573592.CrossRefGoogle Scholar
Blokhuis, A., ‘On the size of a blocking set in $\mathrm{PG}(2,p)$ ’, Combinatorica 14(1) (1994), 111114.CrossRefGoogle Scholar
Cafure, A. and Matera, G., ‘Improved explicit estimates on the number of solutions of equations over a finite field’, Finite Fields Appl. 12(2) (2006), 155185.CrossRefGoogle Scholar
Cossidente, A., Hirschfeld, J. W. P., Korchmáros, G. and Torres, F., ‘On plane maximal curves’, Compos. Math. 121(2) (2000), 163181.CrossRefGoogle Scholar
Duran Cunha, G., ‘Curves containing all points of a finite projective Galois plane’, J. Pure Appl. Algebra 222(10) (2018), 29642974.CrossRefGoogle Scholar
Garcia, A., Güneri, C. and Stichtenoth, H., ‘A generalization of the Giulietti–Korchmáros maximal curve’, Adv. Geom. 10(3) (2010), 427434.CrossRefGoogle Scholar
Giulietti, M. and Korchmáros, G., ‘A new family of maximal curves over a finite field’, Math. Ann. 343(1) (2009), 229245.CrossRefGoogle Scholar
Harris, J., Algebraic Geometry. A First Course, Graduate Texts in Mathematics, 133 (Springer-Verlag, New York, 1992).Google Scholar
Hirschfeld, J. W. P., Projective Geometries over Finite Fields, Oxford Mathematical Monographs (Clarendon Press, Oxford, 1979).Google Scholar
Hirschfeld, J. W. P., Korchmáros, G. and Torres, F., Algebraic Curves over a Finite Field, Princeton Series in Applied Mathematics (Princeton University Press, Princeton, NJ, 2008).CrossRefGoogle Scholar
Homma, M., ‘Fragments of plane filling curves of degree $q+2$ over the finite field of $q$ elements, and of affine-plane filling curves of degree $q+1$ ’, Linear Algebra Appl. 589 (2020), 927.CrossRefGoogle Scholar
Homma, M. and Kim, S. J., ‘Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: supplements to a work of Tallini’, Linear Algebra Appl. 438(3) (2013), 969985.CrossRefGoogle Scholar
Kaji, H., ‘On the Gauss maps of space curves in characteristic $p$ ’, Compos. Math. 70(2) (1989), 177197.Google Scholar
Pardini, R., ‘Some remarks on plane curves over fields of finite characteristic’, Compos. Math. 60(1) (1986), 317.Google Scholar
Piene, R., ‘Projective algebraic geometry in positive characteristic’, in: Analysis, Algebra and Computers in Mathematical Research (Luleå, 1992), Lecture Notes in Pure and Applied Mathematics, 156 (eds. Gyllenberg, M. and Persson, L.-E.) (Dekker, New York, 1994), 263273.Google Scholar
Wallace, A. H., ‘Tangency and duality over arbitrary fields’, Proc. Lond. Math. Soc. (3) 6 1956, 321342.CrossRefGoogle Scholar