Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T01:54:46.266Z Has data issue: false hasContentIssue false

HOLOMORPHIC AUTOMORPHISMS AND PROPER HOLOMORPHIC SELF-MAPPINGS OF A TYPE OF GENERALISED MINIMAL BALL

Published online by Cambridge University Press:  18 August 2017

FENG RONG*
Affiliation:
Department of Mathematics, School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China email frong@sjtu.edu.cn
BEN ZHANG
Affiliation:
Department of Mathematics, School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China email alex_zhangben@sjtu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we first give a description of the holomorphic automorphism group of a convex domain which is a simple case of the so-called generalised minimal ball. As an application, we show that any proper holomorphic self-mapping on this type of domain is biholomorphic.

Type
Research Article
Copyright
© 2017 Australian Mathematical Publishing Association Inc. 

Footnotes

The authors are partially supported by the National Natural Science Foundation of China (Grant No. 11371246).

References

Alexander, H., ‘Proper holomorphic mappings in C n ’, Indiana Univ. Math. J. 26(1) (1977), 137146.CrossRefGoogle Scholar
Dini, G. and Selvaggi, P. A., ‘Localization principle of automorphisms on generalized pseudoellipsoids’, J. Geom. Anal. 7(4) (1997), 575584.CrossRefGoogle Scholar
Hahn, K. T. and Pflug, P., ‘On a minimal complex norm that extends the real Euclidean norm’, Monatsh. Math. 105(2) (1988), 107112.Google Scholar
Jarnicki, M. and Pflug, P., Invariant Distances and Metrics in Complex Analysis, de Gruyter Expositions in Mathematics, 9 (Walter de Gruyter and Co., Berlin, 1993).CrossRefGoogle Scholar
Kim, K.-T., ‘Automorphism groups of certain domains in C n with a singular boundary’, Pacific J. Math. 151(1) (1991), 5764.CrossRefGoogle Scholar
Kodama, A., ‘On the holomorphic automorphism group of a generalized complex ellipsoid’, Complex Var. Elliptic Equ. 59(9) (2014), 13421349.Google Scholar
Oeljeklaus, K., Pflug, P. and Youssfi, E. H., ‘The Bergman kernel of the minimal ball and applications’, Ann. Inst. Fourier (Grenoble) 47(3) (1997), 915928.Google Scholar
Ourimi, N., ‘Proper holomorphic self-mappings of the minimal ball’, Ann. Polon. Math. 79(2) (2002), 97107.CrossRefGoogle Scholar
Park, J. D., ‘Uniform extendibility of the Bergman kernel for generalized minimal balls’, J. Funct. Spaces 2015 (2015), Art. ID 919465, 8 pages.Google Scholar
Pflug, P. and Youssfi, E. H., ‘Complex geodesics of the minimal ball in ℂ n ’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3(1) (2004), 5366.Google Scholar
Rosay, J. P., ‘Sur une caractérisation de la boule parmi les domaines de C n par son groupe d’automorphismes’, Ann. Inst. Fourier (Grenoble) 29(4) (1979), ix, 91–97.CrossRefGoogle Scholar
Rudin, W., Function theory in the unit ball of ℂ n , Classics in Mathematics (Springer, Berlin, 2008), Reprint of the 1980 edition.Google Scholar
Wong, B., ‘Characterization of the unit ball in C n by its automorphism group’, Invent. Math. 41(3) (1977), 253257.Google Scholar
Youssfi, E. H., ‘Proper holomorphic liftings and new formulas for the Bergman and Szegő kernels’, Studia Math. 152(2) (2002), 161186.Google Scholar
Zwonek, W., ‘Automorphism group of some special domain in C n ’, Univ. Iagel. Acta Math. 33 (1996), 185189.Google Scholar