Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T21:27:13.759Z Has data issue: false hasContentIssue false

Exponents of the class groups of imaginary Abelian number fields

Published online by Cambridge University Press:  17 April 2009

A. G. Earnest
Affiliation:
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901. United States of America.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is a classical result, deriving from the Gaussian theory of genera of integral binary quadratic forms, that there exist only finitely many imaginary quadratic fields for which the ideal class group is a group of exponent two. This finiteness has been shown to extend to all those totally imaginary quadratic extensions of any fixed totally real algebraic number field. In this paper we put forward the conjecture that there exist only finitely many imaginary abelian algebraic number fields which have ideal class groups of exponent two, and we examine the extent to which existing methods can be brought to bear on this conjecture. One consequence of the validity of the conjecture would be a proof of the existence of finite abelian groups which do not occur as the ideal class group of any imaginary abelian field.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Ankeny, N.C., Brauer, R. and Chowla, S., “A note on the class numbers of algebraic number fields”, Amer. J. Math. 78 (1956), 5161.CrossRefGoogle Scholar
[2]Boyd, D.W. and Kisilevsky, H., “On the exponent of the ideal class group of complex quadratic fields”, Proc. Amer. Math. Soc. 31 (1971), 433436.Google Scholar
[3]Buell, D.A., “Class groups of quadratic fields”, Math. Comp. 30 (1976), 610623.CrossRefGoogle Scholar
[4]Buell, D.A., “Small class numbers and extreme values of L-functions of quadratic fields”, Math. Comp. 31 (1977), 786796.Google Scholar
[5]Chowla, S., “An extension of Heilbronn's class number theorem”, Quart. J. Math., Oxford Ser. (2) 5 (1934), 304307.CrossRefGoogle Scholar
[6]Cohen, H. and Lenstra, H.W. Jr., “Heuristics on class groups of number fields”, Number Theory Noordwijkerhout 1983, pp. 3362. (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1984).CrossRefGoogle Scholar
[7]Cornell, G. and Rosen, M., “Group-theoretic constraints on the structure of the class group”, J. Number Theory 13 (1981), 111.CrossRefGoogle Scholar
[8]Earnest, A.G. and Körner, O.H., “On ideal class groups of 2-power exponent”, Proc. Amer. Math. Soc. 86 (1982), 196198.CrossRefGoogle Scholar
[9]Hasse, H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörpern, Teil I, Ia, 2 Aufl., Würzburg-Wien, 1965.CrossRefGoogle Scholar
[10]Heilbronn, H., “On the class-number in imaginary quadratic fields”, Quart. J. Math., Oxford Ser. (2) 5 (1934), 150160.CrossRefGoogle Scholar
[11]Kitaoka, Y., “Scalar extension of quadratic lattices”, Nagoya Math. J. 66 (1977), 139149.CrossRefGoogle Scholar
[12]Masley, J.M., “Class groups of abelian number fields”, Queen's Papers in Pure and Appl. Math. 54 (1980), 475497.Google Scholar
[13]Masley, J.M. and Montgomery, H.L., “Unique factorization in cyclotomic fields”, J. Reine Angew. Math. 286/287 (1976), 248256.Google Scholar
[14]Tateyama, K., “On the ideal class groups of some cyclotomic fields”, Proc. Japan Acad., Ser. A Math. Sci. 58 (1982), 333335.CrossRefGoogle Scholar
[15]Uchida, K., “Class numbers of imaginary abelian number fields, I”, Tôhoku Math. J. 23 (1971), 97104.Google Scholar
[16]Washington, L.C., Introduction to Cyclotomic Fields, (Springer-Verlag, New York-Heidelberg-Berlin, 1982).CrossRefGoogle Scholar
[17]Weinberger, P., “Exponents of the class groups of complex quadratic fields”, Acta Arith. 22 (1973), 117124.CrossRefGoogle Scholar
[18]Zimmert, R., “Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung”, Invent. Math. 62 (1981), 367380.CrossRefGoogle Scholar