Skip to main content Accessibility help
×
Home

EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS

  • HUO-JUN RUAN (a1), JIAN-CI XIAO (a2) and BING YANG (a3)

Abstract

The notion of recurrent fractal interpolation functions (RFIFs) was introduced by Barnsley et al. [‘Recurrent iterated function systems’, Constr. Approx.5 (1989), 362–378]. Roughly speaking, the graph of an RFIF is the invariant set of a recurrent iterated function system on $\mathbb {R}^2$ . We generalise the definition of RFIFs so that iterated functions in the recurrent system need not be contractive with respect to the first variable. We obtain the box dimensions of all self-affine RFIFs in this general setting.

Copyright

Corresponding author

Footnotes

Hide All

The research is supported by the NSFC grant 11771391.

Footnotes

References

Hide All
[1]Bárány, B., Rams, M. and Simon, K., ‘Dimension theory of some non-Markovian repellers. Part I: A gentle introduction’, Preprint, 2019, arXiv:1901.04035.
[2]Bárány, B., Rams, M. and Simon, K., ‘Dimension theory of some non-Markovian repellers. Part II: Dynamically defined function graphs’, Preprint, 2019, arXiv:1901.04037.
[3]Barnsley, M. F., ‘Fractal functions and interpolation’, Constr. Approx. 2 (1986), 303329.
[4]Barnsley, M. F., Elton, J. and Hardin, D., ‘Recurrent iterated function systems’, Constr. Approx. 5 (1989), 362378.
[5]Barnsley, M. F., Harding, B., Vince, A. and Viswanathan, P., ‘Approximation of rough functions’, J. Approx. Theory 209 (2016), 2343.
[6]Barnsley, M. and Massopust, P., ‘Bilinear fractal interpolation and box dimension’, J. Approx. Theory 192 (2015), 362378.
[7]Bouboulis, P. and Dalla, L., ‘A general construction of fractal interpolation functions on grids of ${\mathbb{R}}^n$’, European J. Appl. Math. 18 (2007), 449476.
[8]Hardin, D. P. and Massopust, P. R., ‘The capacity of a class of fractal functions’, Comm. Math. Phys. 105 (1986), 455460.
[9]Horn, R. and Johnson, C., Matrix Analysis (Cambridge University Press, Cambridge, UK, 1985).
[10]Kong, Q. G., Ruan, H. J. and Zhang, S., ‘Box dimension of bilinear fractal interpolation surfaces’, Bull. Aust. Math. Soc. 98 (2018), 113121.
[11]Liang, Z. and Ruan, H.-J., ‘Construction and box dimension of recurrent fractal interpolation surfaces’, Preprint, 2019, arXiv:1902.01165.
[12]Małysz, R., ‘The Minkowski dimension of the bivariate fractal interpolation surfaces’, Chaos Solitons Fractals 27 (2006), 11471156.
[13]Mazel, D. S. and Hayes, M. H., ‘Using iterated function systems to model discrete sequences’, IEEE Trans. Signal Process. 40 (1992), 17241734.
[14]Ruan, H. J., Su, W. Y. and Yao, K., ‘Box dimension and fractional integral of linear fractal interpolation functions’, J. Approx. Theory 161 (2009), 187197.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS

  • HUO-JUN RUAN (a1), JIAN-CI XIAO (a2) and BING YANG (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.