Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-20T18:27:57.788Z Has data issue: false hasContentIssue false

Edgeworth expansion on n-spheres and Jacobi hypergroups

Published online by Cambridge University Press:  17 April 2009

Gyula Pap
Affiliation:
Institute of Mathematics, Lajos Kossuth University of Debrecen, Egyetem tér 10, H–4010 Debrecen, Hungary e-mail: papgy@math.klte.hu
Michael Voit
Affiliation:
Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D–72076 Tübingen, Germany e-mail: voit@uni-tuebingen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suitable normalisation of time-homogeneous rotation-invariant random walks on unit spheres Sd ⊂ ℝd+1 for d ≥ 2 leads to a central limit theorem with a Gaussian limit measure. This paper is devoted to an associated Edgeworth expansion with respect to the total variation norm. This strong type of convergence is different from the classical case. The proof is performed in the more general setting of Jacobi-type hypergroups on an interval.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Bhattacharya, R.N. and Rao, R. Ranga, Normal approximation and asymptotic expansions (John Wiley and Sons, New York, London, Sydney, Toronto, 1976).Google Scholar
[2]Bingham, N.H., ‘Random walks on spheres’, Z. Wahrscheinlichkeitsth. verw. Gebiele 22 (1972), 169192.Google Scholar
[3]Bloom, W.R. and Heyer, H., Harmonic analysis of probability measures on hypergroups (De Gruyter, Berlin, New York, 1995).CrossRefGoogle Scholar
[4]Bochner, S., ‘Positivity of the heat kernel for ultraspherical polynomials and similar functions’, Arch. Rational Mech. Anal. 70 (1979), 211217.Google Scholar
[5]Gasper, G., ‘Positivity and convolution structure for Jacobi series’, Ann. Math. 93 (1971), 112118.Google Scholar
[6]Gasper, G., ‘Banach algebras for Jacobi series and positivity of a kernel’, Ann. Math. 95 (1972), 261280.Google Scholar
[7]Helgason, S., Groups and geometric analysis (Academic Press, Orlando, Fl., 1984).Google Scholar
[8]Szegö, G., Orthogonal polynomials, Amer. Math. Soc. Coll. Publ. 23 (Amer. Math. Soc, Providence R.I., 1959).Google Scholar
[9]Voit, M., ‘Rate of convergence to Gaussian measures on n-spheres and Jacobi hyper-groups’, Ann. Probab. 25 (1997), 457477.CrossRefGoogle Scholar