Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T11:54:10.788Z Has data issue: false hasContentIssue false

DIOPHANTINE TRANSFERENCE PRINCIPLE OVER FUNCTION FIELDS

Published online by Cambridge University Press:  28 February 2024

SOURAV DAS*
Affiliation:
Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India
ARIJIT GANGULY
Affiliation:
Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India e-mail: arijit.ganguly1@gmail.com

Abstract

We study the Diophantine transference principle over function fields. By adapting the approach of Beresnevich and Velani [‘An inhomogeneous transference principle and Diophantine approximation’, Proc. Lond. Math. Soc. (3) 101 (2010), 821–851] to function fields, we extend many results from homogeneous to inhomogeneous Diophantine approximation. This also yields the inhomogeneous Baker–Sprindžuk conjecture over function fields and upper bounds for the general nonextremal scenario.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badziahin, D., Beresnevich, V. and Velani, S., ‘Inhomogeneous theory of dual Diophantine approximation on manifolds’, Adv. Math. 232 (2013), 135.CrossRefGoogle Scholar
Beresnevich, V., Dickinson, D. and Velani, S., ‘Measure theoretic laws for lim sup sets’, Mem. Amer. Math. Soc. 179 (2006), 91 pages.Google Scholar
Beresnevich, V., Ganguly, A., Ghosh, A. and Velani, S., ‘Inhomogeneous dual Diophantine approximation on affine subspaces’, Int. Math. Res. Not. IMRN 2020(12) (2020), 35823613.CrossRefGoogle Scholar
Beresnevich, V. and Velani, S., ‘An inhomogeneous transference principle and Diophantine approximation’, Proc. Lond. Math. Soc. (3) 101 (2010) 821851.CrossRefGoogle Scholar
Bugeaud, Y. and Laurent, M., ‘On exponents of homogeneous and inhomogeneous Diophantine approximation’, Mosc. Math. J. 5 (2005) 747766, 972.Google Scholar
Bugeaud, Y. and Zhang, Z., ‘On homogeneous and inhomogeneous Diophantine approximation over the fields of formal power series’, Pacific J. Math. 302(2) (2019), 453480.CrossRefGoogle Scholar
Das, S. and Ganguly, A., ‘Inhomogeneous Khintchine–Groshev type theorems on manifolds over function fields’, Preprint, 2022, arXiv:2209.12218.Google Scholar
Dyson, F. J., ‘On simultaneous Diophantine approximations’, Proc. Lond. Math. Soc. (2) 49 (1947), 409442.Google Scholar
Ganguly, A. and Ghosh, A., ‘Dirichlet’s theorem in function fields’, Canad. J. Math. 69(3) (2017), 532547.CrossRefGoogle Scholar
Ganguly, A. and Ghosh, A., ‘The inhomogeneous Sprindzhuk conjecture over a local field of positive characteristic’, in: Dynamics: Topology and Numbers, Contemporary Mathematics, 744 (eds. Moree, P., Pohl, A., Snoha, L. and Ward, T.) (American Mathematical Society, Providence, RI, 2020), 191204.CrossRefGoogle Scholar
Ghosh, A., ‘Metric Diophantine approximation over a local field of positive characteristic’, J. Number Theory 124(2) (2007), 454469.CrossRefGoogle Scholar
Ghosh, A. and Marnat, A., ‘On Diophantine transference principles’, Math. Proc. Cambridge Philos. Soc. 166(3), 415431.Google Scholar
Kim, D. H. and Nakada, H., ‘Metric inhomogeneous Diophantine approximation on the field of formal Laurent series’, Acta Arith. 150(2) (2011), 129142.CrossRefGoogle Scholar
Kleinbock, D. Y., Lindenstrauss, E. and Weiss, B., ‘On fractal measures and Diophantine approximation’, Selecta Math. (N.S.) 10 (2004), 479523.CrossRefGoogle Scholar
Kleinbock, D. Y. and Margulis, G. A., ‘Flows on homogeneous spaces and Diophantine approximation on manifolds’, Ann. of Math. (2) 148 (1998), 339360.CrossRefGoogle Scholar
Kleinbock, D. Y. and Tomanov, G., ‘Flows on $S$ -arithmetic homogeneous spaces and applications to metric Diophantine approximation’, Comment. Math. Helv. 82 (2007), 519581.CrossRefGoogle Scholar
Lasjaunias, A., ‘A survey of Diophantine approximation in fields of power series’, Monatsh. Math. 130(30 (2000), 211229.Google Scholar
Mahler, K., ‘An analogue to Minkowski’s geometry of numbers in a field of series’, Ann. of Math. (2) 42(2) (1941), 488522.CrossRefGoogle Scholar
Robert, G. G., Hussain, M., Shulga, N. and Ward, B., ‘Weighted approximation for limsup sets’, Preprint, 2023, arXiv:2308.16603.Google Scholar
Sprindzuk, V. G., Mahler’s Problem in Metric Number Theory, Translations of Mathematical Monographs, 25 (American Mathematical Society, Providence, RI, 1969); translated from Russian by B. Volkmann.Google Scholar
Sprindzuk, V. G., ‘Achievements and problems in Diophantine approximation theory’, Russian Math. Surveys 35 (1980), 180.Google Scholar