Skip to main content Accessibility help
×
Home

CENTRALISERS IN THE INFINITE SYMMETRIC INVERSE SEMIGROUP

  • JANUSZ KONIECZNY (a1)

Abstract

For an arbitrary set $X$ (finite or infinite), denote by $\mathcal {I}(X)$ the symmetric inverse semigroup of partial injective transformations on $X$ . For $ \alpha \in \mathcal {I}(X)$ , let $C(\alpha )=\{ \beta \in \mathcal {I}(X): \alpha \beta = \beta \alpha \}$ be the centraliser of $ \alpha $ in $\mathcal {I}(X)$ . For an arbitrary $ \alpha \in \mathcal {I}(X)$ , we characterise the transformations $ \beta \in \mathcal {I}(X)$ that belong to $C( \alpha )$ , describe the regular elements of $C(\alpha )$ , and establish when $C( \alpha )$ is an inverse semigroup and when it is a completely regular semigroup. In the case where $\operatorname {dom}( \alpha )=X$ , we determine the structure of $C(\alpha )$ in terms of Green’s relations.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      CENTRALISERS IN THE INFINITE SYMMETRIC INVERSE SEMIGROUP
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      CENTRALISERS IN THE INFINITE SYMMETRIC INVERSE SEMIGROUP
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      CENTRALISERS IN THE INFINITE SYMMETRIC INVERSE SEMIGROUP
      Available formats
      ×

Copyright

References

Hide All
[1]Araújo, J., Kinyon, M. & Konieczny, J., ‘Minimal paths in the commuting graphs of semigroups’, European J. Combin. 32 (2011), 178197.
[2]Araújo, J. & Konieczny, J., ‘Automorphism groups of centralizers of idempotents’, J. Algebra 269 (2003), 227239.
[3]Araújo, J. & Konieczny, J., ‘Semigroups of transformations preserving an equivalence relation and a cross-section’, Comm. Algebra 32 (2004), 19171935.
[4]Araújo, J. & Konieczny, J., ‘General theorems on automorphisms of semigroups and their applications’, J. Aust. Math. Soc. 87 (2009), 117.
[5]Araújo, J. & Konieczny, J., ‘Centralizers in the full transformation semigroup’, Semigroup Forum, to appear.
[6]Ayik, G., Ayik, H. & Howie, J. M., ‘On factorisations and generators in transformation semigroups’, Semigroup Forum 70 (2005), 225237.
[7]Bates, C., Bundy, D., Perkins, S. & Rowley, P., ‘Commuting involution graphs for symmetric groups’, J. Algebra 266 (2003), 133153.
[8]Higgins, P. M., ‘Digraphs and the semigroup of all functions on a finite set’, Glasgow Math. J. 30 (1988), 4157.
[9]Howie, J. M., Fundamentals of Semigroup Theory (Oxford University Press, New York, 1995).
[10]Iranmanesh, A. & Jafarzadeh, A., ‘On the commuting graph associated with the symmetric and alternating groups’, J. Algebra Appl. 7 (2008), 129146.
[11]Jakubíková, D., ‘Systems of unary algebras with common endomorphisms. I, II’, Czechoslovak Math. J. 29(104) (1979), 406–420, 421–429.
[12]Kolmykov, V. A., ‘On the commutativity relation in a symmetric semigroup’, Siberian Math. J. 45 (2004), 931934.
[13]Kolmykov, V. A., ‘Endomorphisms of functional graphs’, Discrete Math. Appl. 16 (2006), 423427.
[14]Kolmykov, V. A., ‘On commuting mappings’, Mat. Zametki 86 (2009), 389393 (in Russian).
[15]Konieczny, J., ‘Green’s relations and regularity in centralizers of permutations’, Glasgow Math. J. 41 (1999), 4557.
[16]Konieczny, J., ‘Semigroups of transformations commuting with idempotents’, Algebra Colloq. 9 (2002), 121134.
[17]Konieczny, J., ‘Semigroups of transformations commuting with injective nilpotents’, Comm. Algebra 32 (2004), 19511969.
[18]Konieczny, J., ‘Centralizers in the semigroup of injective transformations on an infinite set’, Bull. Austral. Math. Soc. 82 (2010), 305321.
[19]Konieczny, J., ‘Infinite injective transformations whose centralizers have simple structure’, Cent. Eur. J. Math. 9 (2011), 2335.
[20]Konieczny, J. & Lipscomb, S., ‘Centralizers in the semigroup of partial transformations’, Math. Japon. 48 (1998), 367376.
[21]Levi, I., ‘Normal semigroups of one-to-one transformations’, Proc. Edinburgh Math. Soc. 34 (1991), 6576.
[22]Lipscomb, S., Symmetric Inverse Semigroups, Mathematical Surveys and Monographs, 46 (American Mathematical Society, Providence, RI, 1996).
[23]Liskovec, V. A. & Feĭnberg, V. Z., ‘On the permutability of mappings’, Dokl. Akad. Nauk BSSR 7 (1963), 366369 (in Russian).
[24]Novotný, M., ‘Sur un problème de la théorie des applications’, Publ. Fac. Sci. Univ. Massaryk 1953 (1953), 5364 (Czech).
[25]Novotný, M., ‘Über Abbildungen von Mengen’, Pacific J. Math. 13 (1963), 13591369(in German).
[26]Petrich, M., Inverse Semigroups (John Wiley & Sons, New York, 1984).
[27]Petrich, M. & Reilly, N. R., Completely Regular Semigroups (John Wiley & Sons, New York, 1999).
[28]Scott, W. R., Group Theory (Prentice Hall, Englewood Cliffs, NJ, 1964).
[29]Skornjakov, L. A., ‘Unary algebras with regular endomorphism monoids’, Acta Sci. Math. (Szeged) 40 (1978), 375381.
[30]Szechtman, F., ‘On the automorphism group of the centralizer of an idempotent in the full transformation monoid’, Semigroup Forum 70 (2005), 238242.
[31]Weaver, M. W., ‘On the commutativity of a correspondence and a permutation’, Pacific J. Math. 10 (1960), 705711.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed