Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T10:34:02.968Z Has data issue: false hasContentIssue false

Suitability of two root-mining weevils for the biological control of scentless chamomile, Tripleurospermum perforatum, with special regard to potential non-target effects

Published online by Cambridge University Press:  09 March 2007

H.L. Hinz*
Affiliation:
CABI Bioscience Centre Switzerland, Rue des Grillons 1, CH-2800 Delémont, Switzerland
H. Müller-Schärer
Affiliation:
University of Fribourg, Department of Biology/Ecology, Pérolles, CH-1700 Fribourg, Switzerland
*
*Fax 0041 32 4214871 E-mail: h.hinz@cabi-bioscience.ch

Abstract

The biology and host range of the two root-mining weevils Diplapion confluensKirby and Coryssomerus capucinus (Beck), two potential agents for the biological control of scentless chamomile Tripleurospermum perforatum (Mérat) Laínz, were studied in the field in southern Germany and eastern Austria, and in a common garden and under laboratory conditions in Delémont, Switzerland from 1993 to 1999. Both weevils were univoltine, and females started to lay eggs in early spring. Diplapion confluens had three and C. capucinus five instars. Larvae of both species were found in the field from mid-April until the end of July; later instars preferentially fed in the vascular cylinder of the shoot base, root crown or root. Although larvae of both species occupy the same temporal and spatial niche within their host plants, they occurred at all investigated field sites together, and showed a similar distribution within sites. No negative or positive interspecific association was detected. Host-specificity tests including no-choice, single-choice, and multiple-choice tests under confined conditions, as well as tests under field conditions with natural and augmented insect densities revealed that both herbivores were specific to plant species in the tribe Anthemideae. However, their development to mature larva or adult on several cultivated plants, as well as on one plant species native to North America, rendered them unsuitable for field release in North America. It was concluded that to investigate non-target effects reliably, host-specificity tests with biological control agents should be carried out under a variety of conditions, particularly with augmented insect densities, as are expected to occur naturally after release.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, S. (1995) Crop protection with chemicals. Agdex 606–1. Alberta Agriculture, Food and Rural Development, Edmonton, Alberta.Google Scholar
Alonso-Zarazaga, M.A. (1990) Revision of the supraspecific taxa in the Palaearctic Apionidae Schoenherr, 1823 (Coleoptera, Curculionidae). 2. Subfamily Apioninae Schoenherr, 1823: introduction, keys and descriptions. Graellsia 46, 19156.Google Scholar
Bacher, S. (1993) Vergleichende ökologische Studien über zwei sympatrische Rüsselkäfer-Arten an der Geruchlosen Kamille (Tripleurospermum perforatum). Diploma thesis, University of Kiel, Germany..Google Scholar
Bacher, S. (1994) Die Strategien einer biologischen Bekämpfung der Geruchlosen Kamille in Kanada. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, Sonderheft XIV, 221230.Google Scholar
Blossey, B. (1993) Herbivory below ground and biological weed control: life history of a root-boring weevil on purple loosestrife. Oecologia 94, 380387.CrossRefGoogle ScholarPubMed
Blossey, B. (1995) Coexistence of two leaf-beetles in the same fundamental niche. Distribution, adult phenology and oviposition. Oikos 74, 225234.CrossRefGoogle Scholar
Briese, D.T. (1991) Current status of Agrilus hyperici (Coleoptera: Buprestidae) released in Australia in 1940 for the control of St. John's wort: lessons for insect introductions. Biocontrol Science and Technology 1, 207215.CrossRefGoogle Scholar
Briese, D.T. (1999) Open field host-specificity tests: Is ‘natural’ good enough for risk assessment? pp. 4459in Withers, T.M., Barton Browne, L. & Stanley, J. (Eds) Host specificity testing in Australasia: towards improved assays for biological control. Indooroopilly, scientific Publ.Google Scholar
Brown, V.K., Gange, A.C., (1990) Insect herbivory below ground. pp. 158in Begon, M., Fitter, A.H. & MacFadyen, A. (Eds) Advances in ecological research, vol. 20. London, Academic Press.Google Scholar
Cole, D. (1994) Scentless chamomile: biology and control. Agdex 640–6. Alberta Agriculture, Food and Rural Development, Edmonton, Alberta.Google Scholar
Crawley, M. (1989) The successes and failures of weed biocontrol using insects. Biocontrol News and Information 10, 213223.Google Scholar
Dieckmann, L. (1972) Beiträge zur Insektenfauna der DDR: Coleoptera – Curculionidae (Ceutorhynchinae). Beiträge zur Entomologie 22, 3128.Google Scholar
Dieckmann, L. (1977) Beiträge zur Insektenfauna der DDR: Coleoptera – Curculionidae (Apioninae). Beiträge zur Entomologie 27, 7143.Google Scholar
Douglas, D.W., Thomas, A.G., Peschken, D.P., Bowes, G.G. & Derksen, D.A. (1991) Effects of summer and winter annual scentless chamomile (Matricaria perforata Mérat) interference on spring wheat yield. Canadian Journal of Plant Science 71, 841850.CrossRefGoogle Scholar
Douglas, D.W., Thomas, A.G., Peschken, D.P., Bowes, G.G. & Derksen, D.A. (1992) Scentless chamomile (Matricaria perforata Mérat) interference in winter wheat. Canadian Journal of Plant Science 72, 13831387.CrossRefGoogle Scholar
Ehler, L.E. & Hall, R.W. (1982) Evidence for competitive exclusion of introduced natural enemies in biological control. Environmental Entomology 11, 14.CrossRefGoogle Scholar
Ehret, J.M. (1990) Les Apions de France. Clés d'identification commentées (Coleoptera Curculionidae Apioninae). Bulletin Mensuel de la Société Linnéenne de Lyon 59, 209292.CrossRefGoogle Scholar
Forrester, G.J. (1993) Resource partitioning between two species of Ceutorhynchus (Coleoptera: Curculionidae) on Echium plantagineum in a Mediterranean habitat. Bulletin of Entomological Research 83, 345351.CrossRefGoogle Scholar
Freese, G. (1995) Structural refuges in two stem-boring weevils on Rumex crispus. Ecological Entomology 20, 351358.CrossRefGoogle Scholar
Harris, P. (1990) Feeding strategy, coexistence and impact of insects in spotted knapweed capitula. pp. 3947in Delfosse, E.S. (Ed) Proceedings of the VII International Symposium on Biological Control of Weeds6–11 March 1988Rome, Italy. Ist. Sper. Patol. Veg. (MAF), Rome, Italy.Google Scholar
Hinz, H.L. (1998) Life history and host specificity of Rhopalomyia n. sp. (Diptera: Cecidomyiidae), a potential biological control agent of scentless chamomile. Environmental Entomology 27, 15371547.CrossRefGoogle Scholar
Hinz, H.L. (1999) Prospects for the classical biological control of Tripleurospermum perforatum in North America: population biology of the invader and interactions with selected insect herbivores. PhD thesis, University of Fribourg, Switzerland.Google Scholar
Hinz, H.L. & Kirkpatrick, C. (1998) Investigations on potential biocontrol agents of scentless chamomile (Tripleurospermum perforatum (Mérat) Laínz). Unpubl. Annual Report, CAB International Institute of Biological Control, Delémont, Switzerland.Google Scholar
Hinz, H.L. & McClay, A.S. (2000) Ten years of scentless chamomile: prospects for the biological control of a weed of cultivated land. in Proceedings of the X International Symposium on Biological Control of Weeds4–9 July 1999Bozeman, Montana, USA (in press).Google Scholar
Lohse, G.A. (1983) Ceutorhynchinae pp. 153179in Freude, H., Harde, K.W. & Lohse, G.A. (Eds) Die Käfer Mitteleuropas, vol. 11. Krefeld, Goecke und Evers.Google Scholar
McClay, A.S. (1989) Selection of suitable target weeds for classical biological control in Alberta. AECV89-R1. Alberta Environmental Centre, Vegreville, Alberta.Google Scholar
McFadyen, R.E.C. (1998) Biological control of weeds. Annual Review of Entomology 43, 369393.CrossRefGoogle ScholarPubMed
Müller, H. (1989) Structural analysis of the phytophagous insect guilds associated with the roots of Centaurea maculosa Lam., C. diffusa Lam., and C. vallesiaca Jordan in Europe: 1. Field observations. Oecologia 78, 4152.CrossRefGoogle Scholar
Müller-Schärer, H., Stinson, C.S.A., Marquardt, K. & Schroeder, D. (1989) The entomofaunas of roots of Centaurea maculosa Lam., C. diffusa Lam., and C. vallesiaca Jordan in Europe. Niche separation in space and time. Journal of Applied Entomology 107, 8395.CrossRefGoogle Scholar
Müller-Schärer, H. & Schroeder, D. (1993) The biological control of Centaurea spp. in North America: do insects solve the Problem?. Pesticide Science 37, 343353.CrossRefGoogle Scholar
Myers, J.H. (1985) How many insect species are necessary for successful biocontrol of weeds? pp. 7782in Delfosse, E.S. (Ed.) Proceedings of the VI International Symposium on Biological Control of Weeds, 19–25 August 1984, University of British columbia, Vancouver, canada, Agiculture canada, Ottawa.Google Scholar
Peschken, D.P., Thomas, A.G., Bowes, G.G. & Douglas, D.W. (1990) Scentless chamomile (Matricaria perforata) – a new target weed for biological control. pp. 411416 in Delfosse, E.S. (Ed.) Proceedings of the VII International Symposium on Biological Control of Weeds6–11 March 1988Rome, Italy. Ist. Sper.Patol.Veg.(MAF), Rome, Italy.Google Scholar
Peschken, D.P. & Sawchyn, K.D. (1993) Host specificity and suitability of Apion hookeri Kirby (Coleoptera: Curculionidae): a candidate for the biological control of scentless chamomile, Matricaria perforata Mérat (Asteraceae), in Canada. Canadian Entomologist 125, 619628.CrossRefGoogle Scholar
Rathcke, B.J. (1976) Competition and coexistence within a guild of herbivorous insects. Ecology 57, 7687.CrossRefGoogle Scholar
Schwarzländer, M. (1997) Bionomics of Mogulones cruciger (Coleoptera: Curculionidae), a below-ground herbivore for the biological control of hound's-tongue. Environmental Entomology 26, 357365.CrossRefGoogle Scholar
Southwood, T.R.E. (1978) Ecological methods. 524 pp. London, Chapman & Hall.Google Scholar
Wagenitz, G. (1987) Nachträge, Berichtigungen und Ergänzungen zum Nachdruck der 1. Auflage von Band VI/2 (1928/9).in Hegi, G. (Ed.) Illustrierte Flora von Mitteleuropa, Spermatophyta, Band VI, Angiospermae, Dicotyledones 4. Paul Parey, Berlin, Hamburg.Google Scholar
Woo, S.L., Thomas, A.G., Peschken, D.P., Bowes, G.G., Douglas, D.W., Harms, V.L. & McClay, A.S. (1991) The biology of Canadian weeds. 99. Matricaria perforata Mérat (Asteraceae). Canadian Journal of Plant Science 71, 11011119.CrossRefGoogle Scholar