Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T17:18:33.782Z Has data issue: false hasContentIssue false

Stability of spinosad resistance in Frankliniella occidentalis (Pergande) under laboratory conditions

Published online by Cambridge University Press:  18 February 2008

P. Bielza*
Affiliation:
Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203Cartagena, Spain
V. Quinto
Affiliation:
Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203Cartagena, Spain
C. Grávalos
Affiliation:
Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203Cartagena, Spain
E. Fernández
Affiliation:
Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203Cartagena, Spain
J. Abellán
Affiliation:
Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203Cartagena, Spain
J. Contreras
Affiliation:
Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203Cartagena, Spain
*
*Author for correspondence Fax: +34968325435 E-mail: pablo.bielza@upct.es

Abstract

The stability of spinosad resistance in western flower thrips (WFT), Frankliniella occidentalis (Pergande), populations with differing initial frequencies of resistance was studied in laboratory conditions. The stability of resistance was assessed in bimonthly residual bioassays in five populations with initial frequencies of 100, 75, 50, 25 and 0% of resistant individuals. There were no consistent changes in susceptibility of the susceptible strain after eight months without insecticide pressure. In the resistant strain, very highly resistant to spinosad (RF50>23,000-fold), resistance was maintained up to eight months without further exposure to spinosad. In the absence of any immigration of susceptible genes into the population, resistance was stable. In the case of the population with different initial frequency of resistant thrips, spinosad resistance declined significantly two months later in the absence of selection pressure. With successive generations, these strains did not change significantly in sensitivity. Spinosad resistance in F. occidentalis declined significantly in the absence of selection pressure and the presence of susceptible WFT. These results suggest that spinosad resistance probably is unstable under field conditions, primarily due to the immigration of susceptible WFT. Factors influencing stability or reversion of spinosad resistance are discussed.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous (2005) IRAC Mode of Action Classification. http://www.irac-online.org.Google Scholar
Bielza, P., Quinto, V., Contreras, J., Torné, M., Martín, A. & Espinosa, P.J. (2007a) Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of southeastern Spain. Pest Management Science 63, 682687.CrossRefGoogle Scholar
Bielza, P., Quinto, V., Fernández, E., Grávalos, C. & Contreras, J. (2007b) Genetics of spinosad resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Economic Entomology 100, 916920.CrossRefGoogle ScholarPubMed
Broadbent, A.B. & Pree, D.J. (1997) Resistance to insecticides in populations of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) from greenhouses in the Niagara Region of Ontario. Canadian Entomologist 129, 907913.CrossRefGoogle Scholar
Brødsgaard, H.F. (1994) Insecticide resistance in European and African strains of western flower thrips (Thysanoptera: Thripidae) tested in a new residue-on-glass test. Journal of Economic Entomology 87, 11411146.CrossRefGoogle Scholar
Contreras, J., Espinosa, P.J., Quinto, V., Grávalos, C., Fernández, E. & Bielza, P. (???) Stability of insecticide resistance in Frankliniella occidentalis (Pergande) to acrinathrin, formetanate and methiocarb. Agricultural and Forest Entomology, in press.Google Scholar
Espinosa, P.J., Bielza, P., Contreras, J. & Lacasa, A. (2002a) Field and laboratory selection of Frankliniella occidentalis (Pergande) for resistance to insecticides. Pest Management Science 58, 920927.CrossRefGoogle ScholarPubMed
Espinosa, P.J., Bielza, P., Contreras, J. & Lacasa, A. (2002b) Insecticide resistance in field populations of Frankliniella occidentalis (Pergande) in Murcia (south-east Spain). Pest Management Science 58, 967971.CrossRefGoogle ScholarPubMed
Espinosa, P.J., Fuentes, J.F., Contreras, J., Bielza, P. & Lacasa, A. (2002c) Método de cría en masa de Frankliniella occidentalis (Pergande). Boletín de Sanidad Vegetal: Plagas 28, 385390.Google Scholar
Espinosa, P.J., Contreras, J., Quinto, V., Grávalos, C., Fernández, E. & Bielza, P. (2005) Metabolic mechanisms of insecticide resistance in the western flower thrips, Frankliniella occidentalis (Pergande). Pest Management Science 61, 10091015.CrossRefGoogle ScholarPubMed
Ferguson, J.S. (2004) Development and stability of insecticide resistance in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to cyromazine, abamectin, and spinosad. Journal of Economic Entomology 97, 112119.CrossRefGoogle ScholarPubMed
Herron, G.A. & James, T.M. (2005) Monitoring insecticide resistance in Australian Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) detects fipronil and spinosad resistance. Australian Journal of Entomology 44, 299303.CrossRefGoogle Scholar
Hoy, M.A. (1998) Myths models and mitigation of resistance to pesticides. Philosophical Transactions of the Royal Society of Londo, Series B: Biological Sciences 353, 17871795.CrossRefGoogle ScholarPubMed
Immaraju, J.A., Paine, T.D., Bethke, J.A., Roob, K.L. & Newman, J.P. (1992) Western flower thrips (Thysanoptera: Thripidae) resistance to insecticides in costal California greenhouses. Journal of Economic Entomology 85, 914.CrossRefGoogle Scholar
Keiding, J. (1986) Prediction or resistance risk assessment. pp. 279297in National Research Council (Ed.) Pesticide Resistance Strategies and Tactics for Management. Washington DC, National Academy Press.Google Scholar
Kontsedalov, S., Weintraub, P.G., Horowitz, A.R. & Ishaaya, I. (1998) Effects of insecticides on immature and adult western flower thrips (Thysanoptera: Thripidae) in Israel. Journal of Economic Entomology 91, 10671071.CrossRefGoogle Scholar
Martin, N.A. & Workman, P.J. (1994) Confirmation of a pesticide-resistant strain of western flower thrips in New Zealand. pp. 144148 in Proceedings of the 47th New Zealand Plant Protection Conference. 9–11 August 1994, Waitangi Hotel, New Zealand.CrossRefGoogle Scholar
May, R.M. & Dobson, A. (1986) Population dynamics and the rate of evolution of pesticide resistance. pp. 170193in National Research Council (Ed.) Pesticide Resistance Strategies and Tactics for Management. Washington DC, National Academy Press.Google Scholar
Maymó, A.C., Cervera, A., Garcerá, M.D., Bielza, P. & Martínez-Pardo, R. (2006) Relationship between esterase activity and acrinathrin and methiocarb resistance in field populations of western flower thrips, Frankliniella occidentalis. Pest Management Science 62, 11291137.CrossRefGoogle ScholarPubMed
Nauen, R., Stumpf, N. & Elbert, A. (2002) Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science 58, 868875.CrossRefGoogle ScholarPubMed
Ninsin, K.D. & Tanaka, T. (2005) Synergism and stability of acetamiprid resistance in a laboratory colony of Plutella xylostella. Pest Management Science 61, 723727.CrossRefGoogle Scholar
Robb, K.L. (1989) Analysis of Frankliniella occidentalis (Pergande) as a pest of floricultural crops in California greenhouses. PhD thesis, University of California, Riverside, USA.Google Scholar
Robb, K.L., Newman, J., Virzi, J.K. & Parrella, P. (1995) Insecticide resistance in Western Flower Thrips. pp. 341346in Parker, B.L., Skinner, M. & Lewis, T. (Eds) Thrips Biology and Management. New York, Plenum Press.CrossRefGoogle Scholar
Robertson, J.L. & Preisler, H.K. (1992) Pesticide Bioassays with Arthropods. 127 pp. Boca Raton, FL, CRC Press.Google Scholar
Roush, R.T. & Croft, B.A. (1986) Experimental population genetics and ecological studies of pesticide resistance in insects and mites. pp. 257270in National Research Council (Ed.) Pesticide Resistance Strategies and Tactics for Management. Washington DC, National Academy Press.Google Scholar
Russell, R.N., Robertson, J.L. & Savin, Y.N.E. (1977) Polo: a new computer program for probit analysis. Bulletin of the Entomological Society of America 23, 209215.CrossRefGoogle Scholar
Sparks, T.C., Thompson, G.D., Larson, L.L., Kirst, H.A., Jantz, O.K., Worden, T.V., Hertlein, M.B. & Busacca, J.D. (1995) Biological characteristics of the spynosyns: a new and naturally derived insect control agent. pp. 903907 in Proceedings Beltwide Cotton Conference. National Cotton Council, 4–7 January 1995, San Antonio, TX.Google Scholar
Tabashnik, B.E. (1990) Modeling and evaluation of resistance management tactics. pp. 153182in Roush, R.T. & Tabashnik, B.E. (Eds) Pesticide Resistance in Arthropods. New York, Chapman & Hall.CrossRefGoogle Scholar
Wyss, C.F., Young, H.P., Shukla, J. & Roe, R.M. (2003) Biology and genetics of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), highly resistant to spinosad. Crop Protection 22, 307314.CrossRefGoogle Scholar
Zhao, G., Liu, W., Brown, J.M. & Knowles, C.O. (1995) Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology 88, 11641170.CrossRefGoogle Scholar