Skip to main content Accessibility help

Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae

  • P. Mishra (a1), A.P.B Balaji (a1), P.K. Dhal (a1), R.S. Suresh Kumar (a1), S. Magdassi (a2), K. Margulis (a2), B.K Tyagi (a3), A. Mukherjee (a1) and N. Chandrasekaran (a1)...


The occurrence of pesticidal pollution in the environment and the resistance in the mosquito species makes an urge for the safer and an effective pesticide. Permethrin, a poorly water-soluble pyrethroid pesticide, was formulated into a hydrodispersible nanopowder through rapid solvent evaporation of pesticide-loaded oil in water microemulsion. Stability studies confirmed that the nanopermethrin dispersion was stable in paddy field water for 5 days with the mean particle sizes of 175.3 ± 0.75 nm and zeta potential of −30.6 ± 0.62 mV. The instability rate of the nanopermethrin particles was greater in alkaline (pH 10) medium when compared with the neutral (pH 7) and acidic (pH 4) dispersion medium. The colloidal dispersion at 45°C was found to be less stable compared with the dispersions at 25 and 5°C. The 12- and 24-h lethal indices (LC50) for nanopermethrin were found to be 0.057 and 0.014 mg l−1, respectively. These results were corroborative with the severity of damages observed in the mosquito larvae manifested in epithelial cells and the evacuation of the midgut contents. Further, the results were substantiated by the decrease in cellular biomolecules and biomarker enzyme activity in nanopermethrin treated larvae when compared to bulk and control treatment.


Corresponding author

*Author for correspondence Phone: 91 416 2202624 E-mail:;


Hide All
Abou-Donia, M., Goldstein, L., Dechovskaia, A., Bullman, S., Jones, K., Herrick, E., Abdel-Rahman, A. & Khan, W. (2001) Effects of daily dermal application of DEET and permethrin, alone and in combination, on sensorimotor performance, blood-brain barrier, and blood-testis barrier in rats. Journal of Toxicology and Environmental Health Part A 62, 523541.
Ali, N.S., Ali, S.S. & Shakoori, A.R. (2014) Biochemical response of malathion-resistant and-susceptible adults of Rhyzopertha dominica to the sublethal doses of deltamethrin. Pakistan Journal of Zoology 46, 853861.
Anjali, C., Khan, S.S., Margulis-Goshen, K., Magdassi, S., Mukherjee, A. & Chandrasekaran, N. (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicology and Environmental Safety 73, 19321936.
Balaji, A.P.B., Mishra, P., Kumar, R.S., Mukherjee, A. & Chandrasekaran, N. (2015 a) Nanoformulation of poly (ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control. Colloids and Surfaces B: Biointerfaces 128, 370378.
Balaji, A.P.B., Mishra, P., Kumar, R.S., Ashu, A., Margulis, K., Magdassi, S., Mukherjee, A. & Chandrasekaran, N. (2015 b) The environmentally benign form of pesticide in Hydrodispersive Nanometric form with improved efficacy against adult mosquitoes at low exposure concentrations. Bulletin of Environmental Contamination and Toxicology 95(6), 734739.
Balson, T. & Felix, M. (1995) The biodegradability of non-ionic surfactants. pp. 204230 in Karsa, D.R. & Porter, M.R. (Eds) Biodegradability of Surfactants. Blackie Academic and Professional, New York.
Becker, N., Petrić, D., Zgomba, M., Boase, C., Madon, M., Dahl, C. & Kaiser, A. (2010) Mosquitoes and their Control. Springer, Heidelberg, Dordrecht, New York.
Benelli, G. (2015) Research in mosquito control: current challenges for a brighter future. Parasitology Research 114, 28012805.
Broberg, S. & Sahlin, K. (1989) Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. Journal of Applied Physiology 67, 116122.
Boehm, A., Martinon, I., Zerrouk, R., Rump, E. & Fessi, H. (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. Journal of Microencapsulation 20, 433441.
Borm, P.J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, W. & Lademann, J. (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology 3, 11.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.
Brogdon, W.G. & McAllister, J.C. (1998) Insecticide resistance and vector control. Emerging Infectious Diseases 4, 605.
Canavoso, L.E., Jouni, Z.E., Karnas, K.J., Pennington, J.E. & Wells, M.A. (2001) Fat metabolism in insects. Annual Review of Nutrition 21, 2346.
Choi, H.S., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Ipe, B.I., Bawendi, M.G. & Frangioni, J.V. (2007) Renal clearance of quantum dots. Nature Biotechnology 25, 11651170.
Clark, A., Shamaan, N., Sinclair, M. & Dauterman, W. (1986) Insecticide metabolism by multiple glutathione S-transferases in two strains of the house fly, Musca domestica (L). Pesticide Biochemistry and Physiology 25, 169175.
Coiffard, C.A., Coiffard, L.J., Peigne, F.M. & de Roeck-Holtzhauer, Y.M. (1998) Monoammonium glycyrrhizinate stability in aqueous buffer solutions. Journal of the Science of Food and Agriculture 77, 566570.
Devorshak, C. & Roe, R. (1999) The role of esterases in insecticide resistance. Reviews in Toxicology 2, 501537.
Dhiman, R.C., Pahwa, S., Dhillon, G. & Dash, A.P. (2010) Climate change and threat of vector-borne diseases in India: are we prepared? Parasitology Research 106, 763773.
Djènontin, A., Pennetier, C., Zogo, B., Soukou, K.B., Ole-Sangba, M., Akogbéto, M., Chandre, F., Yadav, R. & Corbel, V. (2014) Field efficacy of Vectobac GR as a mosquito larvicide for the control of Anopheline and Culicine mosquitoes in natural habitats in Benin, West Africa. PLoS ONE 9(2), e87934.
Doong, R.-A. & Lei, W.-G. (2003) Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. Journal of Hazardous Materials 96, 1527.
Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7, 8895.
Etebari, K., Bizhannia, A., Sorati, R. & Matindoost, L. (2007) Biochemical changes in haemolymph of silkworm larvae due to pyriproxyfen residue. Pesticide Biochemistry and Physiology 88, 1419.
Farnesi, L.C., Brito, J.M., Linss, J.G., Pelajo-Machado, M., Valle, D. & Rezende, G.L. (2012) Physiological and morphological aspects of Aedes aegypti developing larvae: effects of the chitin synthesis inhibitor novaluron. PLoS ONE 7(1), e30363.
Freitas, C. & Müller, R.H. (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. International Journal of Pharmaceutics 168, 221229.
Gopalan, S.S. & Das, A. (2009) Household economic impact of an emerging disease in terms of catastrophic out-of-pocket health care expenditure and loss of productivity: investigation of an outbreak of chikungunya in Orissa, India. Journal of Vector Borne Diseases 46, 5764.
Grant, D.F. & Matsumura, F. (1989) Glutathione S-transferase 1 and 2 in susceptible and insecticide resistant Aedes aegypti . Pesticide Biochemistry and Physiology 33, 132143.
Guang Guo, Y. (2004) Behavior and effects of surfactants and their degradation products in the environment. International Journal of Environment 32, 417431.
Hayaoka, T. & Dauterman, W. (1982) Induction of glutathione S-transferase by phenobarbital and pesticides in various house fly strains and its effect on toxicity. Pesticide Biochemistry and Physiology 17, 113119.
Haynes, K.F. (1988) Sublethal effects of neurotoxic insecticides on insect behavior. Annual Review of Entomology 33, 149168.
Hemingway, J., Hawkes, N.J., McCarroll, L. & Ranson, H. (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology 34(7), 653665.
Jiang, J., Oberdörster, G. & Biswas, P. (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research 11, 7789.
Kady, G., Kamel, N.H., Mosleh, Y.Y. & Bahght, I.M. (2008) Comparative toxicity of two bio-insecticides (Spinotoram and Vertemic) compared with methomyl against Culex pipiens and Anopheles multicolor . World Journal of Agricultural Sciences 4, 198205.
Kamrin, M.A. (1997) Pesticide Profiles: Toxicity, Environmental Impact, and Fate. CRC Press, Florida.
Kaufmann, C. & Brown, M.R. (2008) Regulation of carbohydrate metabolism and flight performance by a hypertrehalosaemic hormone in the mosquito Anopheles gambiae . Journal of Insect Physiology 54, 367377.
Khosravi, R. & Sendi, J.J. (2013) Effect of neem pesticide (achook) on midgut enzymatic activities and selected biochemical compounds in the hemolymph of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Journal of Plant Protection Research 53, 238247.
Kostaropoulos, I., Papadopoulos, A.I., Metaxakis, A., Boukouvala, E. & Papadopoulou-Mourkidou, E. (2001) Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochemistry and Molecular Biology 31, 313319.
Kumar, R.S., Shiny, P., Anjali, C., Jerobin, J., Goshen, K.M., Magdassi, S., Mukherjee, A. & Chandrasekaran, N. (2013) Distinctive effects of nano-sized permethrin in the environment. Environmental Science and Pollution Research 20, 25932602.
Lagadic, L., Cuany, A., Bergé, J.-B. & Echaubard, M. (1993) Purification and partial characterization of glutathione S-transferases from insecticide-resistant and lindane-induced susceptible Spodoptera littoralis (Boisd.) larvae. Insect Biochemistry and Molecular Biology 23, 467474.
Lee, S., Gan, J., Kim, J.S., Kabashima, J.N. & Crowley, D.E. (2004) Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environmental Toxicology and Chemistry 23, 16.
Liu, Y., Tong, Z. & Prud'homme, R.K. (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Management Science 64, 808812.
Liu, Y., Sun, C., Hao, Y., Jiang, T., Zheng, L. & Wang, S. (2010) Mechanism of dissolution enhancement and bioavailability of poorly water soluble celecoxib by preparing stable amorphous nanoparticles. Journal of Pharmacy & Pharmaceutical Sciences 13, 589606.
Locke, M. & Huie, P. (1981) Epidermal feet in pupal segment morphogenesis. Tissue and Cell 13, 787803.
Margulis-Goshen, K. & Magdassi, S. (2012) Organic nanoparticles from microemulsions: formation and applications. Current Opinion in Colloid & Interface Science 17, 290296.
Mehlhorn, H., Al-Rasheid, K.A., Al-Quraishy, S. & Abdel-Ghaffar, F. (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitology Research 110, 259265.
Metin, C.O., Lake, L.W., Miranda, C.R. & Nguyen, Q.P. (2011) Stability of aqueous silica nanoparticle dispersions. Journal of Nanoparticle Research 13, 839850.
Meyer, S., Berrut, S., Goodenough, T., Rajendram, V., Pinfield, V. & Povey, M. (2006) A comparative study of ultrasound and laser light diffraction techniques for particle size determination in dairy beverages. Measurement Science and Technology 17, 289.
Mishra, P., Balaji, A.P.B., Swathy, J.S., Paari, A.L., Kezhiah, M., Tyagi, B.K., Mukherjee, A. & Chandrasekaran, N. (2016) Stability assessment of hydro dispersive nanometric permethrin and its biosafety study towards the beneficial bacterial isolate from paddy rhizome. Environmental Science and Pollution Research 23(24), 2497024982.
Mutheneni, S.R., Upadhyayula, S.M. & Natarajan, A. (2014) Prevalence of Japanese encephalitis and its modulation by weather variables. Journal of Public Health and Epidemiology 2014 6, 5259.
Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W. & Lai, D. (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology 2, 8.
Punzo, F. (1993) Detoxification enzymes and the effects of temperature on the toxicity of pyrethroids to the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 105, 155158.
Rajakumar, G. & Rahuman, A.A. (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Tropica 118, 196203.
Ray, D.E., Ray, D. & Forshaw, P.J. (2000) Pyrethroid insecticides: poisoning syndromes, synergies, and therapy. Journal of Toxicology: Clinical Toxicology 38, 95101.
Revathi, K., Chandrasekaran, R., Thanigaivel, A., Kirubakaran, S.A., Sathish-Narayanan, S. & Senthil-Nathan, S. (2013) Effects of Bacillus subtilis metabolites on larval Aedes aegypti L. Pesticide Biochemistry and Physiology 107, 369376.
Riddick, T. (1968) Zeta-Meter Manual. New York, Zeta-Meter Inc.
Sak, O., Uckan, F. & Ergin, E. (2006) Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Belgian Journal of Zoology 136–1, 53.
Salahuddin, S., SitiHajar, A. & Hidayatulfathi, O. (2004) Residual efficacy of insect growth regulators pyriproxyfen, triflumuronands-methoprene against Aedes aegypti (L.) in plastic containers in the field. Tropical Biomedicine 21, 97100.
Schoonhoven, L. (1982) Biological aspects of antifeedants. Entomologia experimentalis et applicata 31, 5769.
Selvi, S., Edah, M.A., Nazni, W.A., Lee, H.L. & Azahari, A.H. (2007) Characterization on malathion and permethrin resistance by bioassays and the variation of esterase activity with the life stages of the mosquito Culex quinquefasciatus . Tropical Biomedicine 24, 6375.
Shakoori, A., Saleem, M. & Mantle, D. (1998) Some macromolecular abnormalities induced by a sublethal dose of Cymbush 10EC in adult beetles of Tribolium castaneum . Pakistan Journal of Zoology (Pakistan) 30, 8390.
Sharom, M.S. & Solomon, K.R. (1981) Adsorption-desorption, degradation, and distribution of permethrin in aqueous systems. Journal of Agricultural and Food Chemistry 29(6), 11221125.
Sharma, P., Mohan, L., Dua, K.K. & Srivastava, C.N. (2011) Status of carbohydrate, protein and lipid profile in the mosquito larvae treated with certain phytoextracts. Asian Pacific Journal of Tropical Medicine 4, 301304.
Shaurub, E.-S.H. & El-Aziz, N.M.A. (2015) Biochemical effects of lambda-cyhalothrin and lufenuron on Culex pipiens L.(Diptera: Culicidae). International Journal of Mosquito Research 2(3), 122126.
Sugumar, S., Clarke, S., Nirmala, M., Tyagi, B., Mukherjee, A. & Chandrasekaran, N. (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus . Bulletin of Entomological Research 104, 393402.
Sutherland, P., Burgess, E., Philip, B., McManus, M., Watson, L. & Christeller, J. (2002) Ultrastructural changes to the midgut of the black field cricket (Teleogryllus commodus) following ingestion of potato protease inhibitor II. Journal of Insect Physiology 48, 327336.
Suzuki, T., Sakurai, S. & Iwami, M. (2011) Steroidal regulation of hydrolyzing activity of the dietary carbohydrates in the silkworm, Bombyx mori . Journal of Insect Physiology 57, 12821289.
Terra, W.R. (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Archives of Insect Biochemistry and Physiology 47, 4761.
Terra, W.R. & Ferreira, C. (1994) Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 109, 162.
Tiwari, S., Singh, R.K., Tiwari, R. & Dhole, T.N. (2012) Japanese encephalitis: a review of the Indian perspective. The Brazilian Journal of Infectious Diseases 16, 564573.
Vijayakumar, S., Vinoj, G., Malaikozhundan, B., Shanthi, S. & Vaseeharan, B. (2015) Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy 137, 886891.
WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides (CDS/WHOPES/GCDPP/05.13).
WHO (2009) Dengue Guidelines for Diagnosis, Treatment, and Prevention Control. Geneva, World Health Organization.
Yu, S., Robinson, F. & Nation, J. (1984) Detoxication capacity in the honey bee, Apis mellifera L. Pesticide Biochemistry and Physiology 22, 360368.
Yuval, B., Holliday-Hanson, M.L. & Washing, R.K. (1994) Energy budget of swarming male mosquitoes. Ecological Entomology 19, 7478.


Related content

Powered by UNSILO

Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae

  • P. Mishra (a1), A.P.B Balaji (a1), P.K. Dhal (a1), R.S. Suresh Kumar (a1), S. Magdassi (a2), K. Margulis (a2), B.K Tyagi (a3), A. Mukherjee (a1) and N. Chandrasekaran (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.