Skip to main content Accessibility help
×
Home

RNA interference-aided knockdown of a putative saccharopine dehydrogenase leads to abnormal ecdysis in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)

  • P.-J. Wan (a1) (a2), L. Yang (a1) (a2), S.-Y. Yuan (a1) (a2), Y.-H. Tang (a1), Q. Fu (a1) and G.-Q. Li (a2)...

Abstract

The brown planthopper Nilaparvata lugens is a serious phloem-feeding pest of rice in China. The current study focuses on a saccharopine dehydrogenase (SDH) that catalyzes the penultimate reaction in biosynthesis of the amino acid lysine (Lys), which plays a role in insect growth and carnitine production (as a substrate). The protein, provisionally designated as NlylsSDH [a SDH derived from yeast-like symbiont (YLS) in N. lugens], had a higher transcript level in abdomens, compared with heads, wings, legs and thoraces, which agrees with YLS distribution in N. lugens. Ingestion of Nlylssdh targeted double-stranded RNA (dsNlylssdh) for 5, 10 and 15 days decreased the mRNA abundance in the hoppers by 47, 70 and 31%, respectively, comparing with those ingesting normal or dsegfp diets. Nlylssdh knockdown slightly decreased the body weights, significantly delayed the development of females, and killed approximately 30% of the nymphs. Moreover, some surviving adults showed two apparent phenotypic defects: wing deformation and nymphal cuticles remained on tips of the legs and abdomens. The brachypterours/macropterours and sex ratios (female/male) of the adults on the dsRNA diet were lowered compared with the adults on diets without dsRNA. These results suggest that Nlylssdh encodes a functional SDH protein. The adverse effect of Nlylssdh knockdown on N. lugens implies the importance of Lys in hopper development. This study provides a proof of concept example that Nlylssdh could serve as a possible dsRNA-based pesticide for planthopper control.

Copyright

Corresponding author

* Author for correspondence Phone: +86-25-84395248 Fax: +86-25-84395248 E-mail: fuqiang@caas.cn and ligq@njau.edu.cn

References

Hide All
Andi, B., Cook, P.F. & West, A.H. (2006) Crystal structure of the His-tagged saccharopine reductase from Saccharomyces cerevisiae at 1.7-Å resolution. Cell Biochemistry and Biophysics 46, 1726.
Bhat, N.S. & Bhattacharya, A.K. (1978) Consumption and utilization of soybean by Spodoptera litura (Fabricus) at different temperatures. Indian Journal of Entomology 40, 1625.
Bratty, M.A., Chintapalli, V.R., Dow, J.A.T., Zhang, T. & Watson, D.G. (2012) Metabolomic profiling reveals that Drosophila melanogaster larvae with the y mutation have altered lysine metabolism. FEBS Open Bio 2, 217221.
Carter, H.E., Bhattacharrya, P.K., Weidman, K.R. & Fraenkel, G. (1952) Chemical studies on vitamin BT. Isolation and characterization as carnitine. Archives of Biochemistry and Biophysics 38, 405416.
Caswell, H. & Weeks, D.E. (1986) Two-sex models: chaos, extinction, and other dynamic consequences of sex. American Naturalist 128, 707735.
Charnov, E.L., Los-Den Hartogh, R.L., Jones, W.T. & van Den, A.J. (1981) Sex ratio evolution in a variable environment. Nature 289, 2733.
Chen, C.C., Cheng, L.L. & Hou, R.F. (1981) Studies on the intracellular yeast-like symbiote in the brown planthopper, Nilaparvata lugens Stal. Journal of Applied Entomology 92, 440449.
Chen, Y.H., Bernal, C.C., Tan, J., Horgan, F.G. & Fitzgerald, M.A. (2011) Planthopper “adaptation” to resistant rice varieties: changes in amino acid composition over time. Journal of Insect Physiology 57, 13751384.
Cheng, D. & Hou, R. (2001) Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stal (Homoptera, Delphacidae). Tissue and Cell 33, 273279.
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 11641165.
Dong, S.Z., Pang, K., Bai, X., Yu, X.P. & Hao, P.Y. (2011) Identification of two species of yeast-like symbiotes in the brown planthopper, Nilaparvata lugens . Current Microbiology 62, 11331138.
Fraenkel, G. (1951) Effect and distribution of vitamin BT . Archives of Biochemistry and Biophysics 34, 457468.
Fraenkel, G., Blewett, M. & Coles, M. (1948) Bt, a new vitamin of the B-group and its relation to the folic acid group, and other anti-anaemia factors. Nature 161, 981983.
Fu, Q., Zhang, Z.T., Hu, C. & Lai, F.X. (2001 a) The effects of high temperature on both yeast-like symbionts and amino acid requirements of Nilaparvata lugens . Acta Entomologia Sinica 44, 534540.
Fu, Q., Zhang, Z., Hu, C., Lai, F. & Sun, Z. (2001 b) A chemically defined diet enables continuous rearing of the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Applied Entomology and Zoology 36, 111116.
Fukumorita, T. & Chino, M. (1982) Sugar, amino acid and inorganic contents in rice phloem sap. Plant and Cell Physiology 23, 273283.
Gingle, A.R. (1985) Acetylcholine and carnitine sensitive growth in a Drosophila cell line. Comparative Biochemistry and Physiology C 82, 235241.
Horie, Y., Inokuchi, T., Watanabe, K., Nakasone, S. & Yanagawa, H. (1976) Quantitative study on food utilization by the silkworm, Bombyx mori, through its life cycle. I. Economy of dry matter, energy, and carbon. Bulletin of the Sericulture Experimental Station 26, 441442.
Isaac, R.E., Li, C., Leedale, A.E. & Shirras, A.D. (2010) Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proceedings of the Royal Society: Biological Science 277, 6570.
Jia, S., Wan, P.-J., Zhou, L.-T., Mu, L.-L. & Li, G.-Q. (2013 a) Molecular cloning and RNA interference-mediated functional characterization of a Halloween gene spook in the white-backed planthopper Sogatella furcifera . BMC Molecular Biology 14, 19.
Jia, S., Wan, P.-J., Zhou, L.-T., Mu, L.-L. & Li, G.-Q. (2013 b) Knockdown of a putative Halloween gene Shade reveals its role in ecdysteroidogenesis in the small brown planthopper Laodelphax striatellus . Gene 531, 168174.
Johansson, E., Steffens, J.J., Lindqvist, Y. & Schneider, G. (2000) Crystal structure of saccharopine reductase from Magnaporthe grisea, an enzyme of the α-aminoadipate pathway of lysine biosynthesis. Structure 8, 10371047.
Kishimoto, R. (1956) Effect of crowding during the larval period on the determination of the wing-form of the adults planthopper. Nature 178, 641642.
Kosuge, T. & Hoshino, T. (1999) The α-aminoadipate pathway for lysine biosynthesis is widely distributed among Thermus strains. Journal of Bioscience and Bioengineering 88, 672675.
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.
Lee, Y.H. & Hou, R.F. (1987) Physiological roles of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugens Stål. Journal of Insect Physiology 33, 851860.
Loschiavo, S.R. (1980) An insect bioassay to evaluate feed barley of different lysine content. Journal of the Science of Food and Agriculture 31, 351354.
Mathavan, S. & Bhaskaran, R. (1975) Food selection and utilization in a Danid butterfly. Oecologia 18, 5562.
Morooka, S. & Tojo, S. (1992) Maintenance and selection of strains exhibiting specific wing forms and body color under high-density conditions in the brown planthopper, Nilaparvata lugens (Homoptera, Delphacidae). Applied Entomology and Zoology 27, 445454.
Nakano, K. & Monsi, M. (1968) An experimental approach to some quantitative aspects of grazing by silkworms (Bombyx mori). Japanese Journal of Ecology 18, 217230.
Noda, H., Nakashima, N. & Koizumi, M. (1995) Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA sequences. Insect Biochemistry and Molecular Biology 25, 639646.
Palli, S.R. (2014) RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Current Opinion in Insect Science. Available online at http://dx.doi.org/10.1016/j.cois.2014.09.011.
Quezada-Garcia, R., Pureswaran, D. & Bauce, E. (2014) Nutritional stress causes male-biased sex ratios in eastern spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist 146, 219223.
Stamatakis, A. (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.
Stockhoff, B.A. (1993) Ontogenetic change in dietary selection for protein and lipid by gypsy moth larvae. Journal of Insect Physiology 39, 677686.
Strub, B.R., Parkes, T.L., Mukai, S.T., Bahadorani, S., Coulthard, A.B., Hall, N., Phillips, J.P. & Hilliker, A.J. (2008) Mutations of the withered (whd) gene in Drosophila melanogaster confer hypersensitivity to oxidative stress and are lesions of the carnitine palmitoyltransferase I (CPT I) gene. Genome 51, 409420.
Telang, A., Booton, V., Chapman, R.F. & Wheeler, D.E. (2001) How female caterpillars accumulate their nutrient reserves. Journal of Insect Physiology 47, 10551064.
Urrestarazu, L., Borell, C. & Bhattacharjee, J. (1985) General and specific controls of lysine biosynthesis in Saccharomyces cerevisiae . Current Genetics 9, 341344.
Velasco, A., Leguina, J. & Lazcano, A. (2002) Molecular evolution of the lysine biosynthetic pathways. Journal of Molecular Evolution 55, 445449.
Wan, P.-J., Yang, L., Wang, W.-X., Fan, J.-M., Fu, Q. & Li, G.-Q. (2014) Constructing the major biosynthesis pathways for amino acids in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae), based on the transcriptome data. Insect Molecular Biology 23, 152164.
Wang, G.-C., Fu, Q., Lai, F.-X., Chen, M.-X., Mou, R.-X. & Zhang, Z.-T. (2005) Relationship between yeast-like symbiotes and amino acid requirements in the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera:Delphacidae). Acta Entomologica Sinica 48, 483490.
Wilkinson, T. & Ishikawa, H. (2001) On the functional significance of symbiotic microorganisms in the Homoptera: a comparative study of Acyrthosiphon pisum and Nilaparvata lugens . Physiological Entomology 26, 8693.
Wolf, G. (2006) The discovery of a vitamin role for carnitine: the first 50 years. The Journal of Nutrition 136, 21312134.
Xu, H., Andi, B., Qian, J., West, A.H. & Cook, P.F. (2006) The α-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochemistry and Biophysics 46, 4364.
Xu, H., West, A.H. & Cook, P.F. (2007) Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae . Biochemistry 46, 76257636.
Yang, L., Fu, Q., Hu, W.-B., Li, F. & Li, G.-Q. (2012) Transcriptome-based identification of enzymes involved in amino acid biosynthesis in the small brown planthopper, Laodelphax striatellus . Open Access Insect Physiology 4, 1929.
Yuan, M., Lu, Y., Zhu, X., Wan, H., Shakeel, M., Zhan, S., Jin, B.-R. & Li, J. (2014) Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR. PLoS ONE 9, e86503.
Zhang, Z.-Q. (1983) A study on the development of wing dimorphism in the rice brwon planthopper, Nilarpavata lugens (Stal). Acta Entomologia Sinica 26, 260266.
Zou, Y.-D., Chen, J.-C. & Wang, S.-H. (1982) The relation between nutrient substances in the rice plant and wing dimorphism of the brown planthopper (Nilarpavata lugens). Acta Entomologia Sinica 25, 220222.

Keywords

RNA interference-aided knockdown of a putative saccharopine dehydrogenase leads to abnormal ecdysis in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)

  • P.-J. Wan (a1) (a2), L. Yang (a1) (a2), S.-Y. Yuan (a1) (a2), Y.-H. Tang (a1), Q. Fu (a1) and G.-Q. Li (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed