Skip to main content Accessibility help

Recent changes in reproductive phenology of a K-selected aquatic insect predator, Belostoma flumineum Say (Heteroptera, Belostomatidae)

  • S.L. Kight (a1), G.L. Coffey (a1), A.W. Tanner (a1), M.P. Dmytriw (a1), S.L. Tedesco (a1), J. Hoang (a1) and A.K. Aboagye (a1)...


The timing of critical events like mating, migration, and development has noticeably and recently shifted in many populations of diverse organisms. Here, we report a change in the breeding phenology of giant waterbugs, Belostoma flumineum Say (Heteroptera, Belostomatidae), in the northeastern United States. Waterbugs collected in 2005 and 2006 exhibited previously typical patterns of mating and reproduction: two annual reproductive peaks in which overwintered adults mated in the spring and young adults from a new generation mated in the fall. In 2012 and 2015, despite similar sampling effort, we detected no fall breeding activity in the study area. Reproductive behaviour under controlled laboratory conditions was also different between the earlier (2005 and 2006) and recent (2012 and 2015) years: waterbugs collected in recent years exhibited significant delays in reproduction (>30 days) under similar photoperiod and thermal conditions. We discuss potential causes of this dramatic change in reproductive behaviour, such as climate change, as well as possible negative impacts of the absence of fall reproduction on populations of B. flumineum in the study region.


Corresponding author

*Author for correspondence Phone: +1 973 655 5426 Fax: +1 973 655 7047 E-mail:


Hide All
Boggs, C.L. (2016) The fingerprints of global climate change on insect populations. Current Opinion in Insect Science 17, 6973.
Both, C., Van Asch, M., Bijlsma, R.G., Van Den Burg, A.B. & Visser, M.E. (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? Journal of Animal Ecology 78, 7383.
Bradley, N.L., Leopold, A.C., Ross, J. & Huffaker, W. (1999) Phenological changes reflect climate change in Wisconsin. Proceedings of the National Academy of Sciences 96, 97019704.
Brown, C.J., O'Connor, M.I., Poloczanska, E.S., Schoeman, D.S., Buckley, L.B., Burrows, M.T., Duarte, C.M., Halpern, B.S., Pandolfi, J.M., Parmesan, C. & Richardson, A.J. (2016) Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Global Change Biology 22, 15481560.
Buckley, L.B., Nufio, C.R., Kirk, E.M. & Kingsolver, J.G. (2015) Elevational differences in developmental plasticity determine phenological responses of grasshoppers to recent climate warming. Proceedings of the Royal Society B: Biological Sciences 282, 20150441.
Canziani, O.F., Palutikof, J.P., van der Linden, P.J. & Hanson, C.E. (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability (Vol. 4). in Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. & Hanson, C.E. (Eds). Assessment of observed changes and responses in natural and managed systems. Cambridge University Press, Cambridge, pp. 79132.
Cotton, P.A. (2003) Avian migration phenology and global climate change. Proceedings of the National Academy of Sciences 100, 1221912222.
Faccoli, M. (2009) Effect of weather on Ips typographus (Coleoptera Curculionidae) phenology, voltinism, and associated spruce mortality in the southeastern Alps. Environmental Entomology 38, 307316.
Flenner, I. & Sahlén, G. (2008) Dragonfly community re-organisation in boreal forest lakes: rapid species turnover driven by climate change? Insect Conservation and Diversity 1, 169179.
Flosi, J.W. (1980) The population biology of the giant water bug Belostoma flumineum Say (Hemiptera: Belostomatidae). Retrospective Theses and Dissertations. Paper 7326. Iowa State University, Ames, Iowa, USA.
Gilg, M.R. (1996) The relationship of catalase activity to the trade-off between reproduction and lifespan in the giant waterbug, Belostoma flumineum. Master's thesis, Eastern Illinois University, Charleston, Illinois, USA.
Gilg, M.R. & Kruse, K.C. (2003) Reproduction decreases life span in the giant waterbug (Belostoma flumineum). The American Midland Naturalist 149, 306319.
Gill, J.A., Alves, J.A., Sutherland, W.J., Appleton, G.F., Potts, P.M. & Gunnarsson, T.G. (2014) Why is timing of bird migration advancing when individuals are not? Proceedings of the Royal Society of London B: Biological Sciences 281, 20132161.
Gordo, O. & Sanz, J.J. (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484495.
Harrington, R., Clark, S.J., Weltham, S.J., Virrier, P.J., Denhol, C.H., Hullé, M., Maurice, D., Rounsevell, M.D. & Cocu, N. (2007) Environmental change and the phenology of European aphids. Global Change Biology 13, 15561565.
Hassall, C., Thompson, D.J., French, G.C. & Harvey, I.F. (2007) Historical changes in the phenology of British Odonata are related to climate. Global Change Biology 13, 15561565.
Hughes, L. (2000) Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15, 5661.
Kight, S.L. & Kruse, K.C. (1992) Factors affecting the allocation of paternal care in waterbugs (Belostoma flumineum Say). Behavioral Ecology and Sociobiology 30, 409414.
Kight, S.L., Sprague, J., Kruse, K.C. & Johnson, L. (1995) Are egg-bearing male water bugs, Belostoma flumineum Say (Hemiptera: Belostomatidae), impaired swimmers? Journal of the Kansas Entomological Society 68, 468470.
Kight, S.L., Batino, M. & Zhang, Z. (2000) Temperature-dependent parental investment in the giant waterbug Belostoma flumineum (Heteroptera: Belostomatidae). Annals of the Entomological Society of America 93, 340342.
Kight, S.L., Steelman, L., Coffey, G., Lucente, J. & Castillo, M. (2008) Evidence of population-level lateralized behaviour in giant waterbugs, Belostoma flumineum Say (Heteroptera: Belostomatidae): T-maze turning is left biased. Behavioural Processes 79, 6669.
Kight, S.L., Tanner, A.W. & Coffey, G.L. (2011) Termination of brooding in male giant waterbugs is associated with season, egg pad size, and presence of females. Invertebrate Reproduction and Development 55, 197204.
Kruse, K.C. (1990) Male backspace availability in the male giant waterbug Belostoma flumineum Say. Behavioral Ecology and Sociobiology 26, 281289.
Lauck, D.R. & Menke, A.S. (1961) The higher classification of the Belostomatidae (Hemiptera). Annals of the Entomological Society of America 54, 644657.
Menzel, A., Sparks, T.H., Estrella, N., Kochz, E., Aasa, A., Ahas, R., Alm-Kubler, K., Bissollik, P., Braslavska, O., Briede, A., Chmielewskizz, F.M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Mage, F., Mestre, A., Nordli, O., Penuelas, J., Pirinen, P., Remisova, V., Scheifingerz, H., Striz, M., Susnik, A., Van Vliet, A.J.H., Wielgolaski, F., Zach, S. & Zust, A. (2006) European phenological response to climate change matches the warming pattern. Global Change Biology 12, 19691976.
Moyes, K., Nussey, D.H., Clements, M.N., Guinness, F.E., Morris, A., Morris, S, Pemberton, J.M., Kruuk, L.E.B. & Clutton-Brock, T.H. (2011) Advancing breeding phenology in response to environmental change in a wild red deer population. Global Change Biology 17, 24552469.
Musolin, D.L. (2007) Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Global Change Biology 13, 15651585.
New Jersey Department of Environmental Protection (2017) Climate Change in New Jersey: Temperature, Precipitation, Extreme Events and sea Level. Environmental Trends Report. NJDEP, Division of Science, Research, and Environmental Health, Trenton, New Jersey, USA, pp. 16.
Ohba, S., Miyasaka, H. & Nakasuji, F. (2008) The role of amphibian prey in the diet and growth of giant water bug nymphs in Japanese rice fields. Population Ecology 50, 916.
Ovaskainen, O., Skorokhodova, S., Yakovleva, M., Sukhov, A., Kutenkov, A., Kutenkova, N., Shcherbakov, A., Meyke, E. & del Mar Delgado, M. (2013) Community-level phenological response to climate change. Proceedings of the National Academy of Sciences 110, 1343413439.
Primack, R.B., Ibáñez, I., Higuchi, H., Lee, S.D., Miller-Rushing, A.J., Wilson, A.M. & Silander, J.A. Jr. (2009) Spatial and interspecific variability in phenological responses to warming temperatures. Biological Conservation 142, 25692577.
Qu, J., Yang, M., Li, W., Chen, Q., Mi, Z., Xu, W. & Zhang, Y. (2016) Effects of climate change on the reproduction and offspring sex ratio of plateau pika (Ochotona curzoniae) on the Tibetan Plateau. Journal of Arid Environments 134, 6672.
Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O. & Toomey, M. (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169, 156173.
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T.L., Estrella, N., Seguin, B. & Tryjanowski, P. (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353357.
Roy, D.B. & Sparks, T.H. (2000) Phenology of British butterflies and climate change. Global Change Biology 6, 407416.
Schmitz, O.J. & Barton, B.T. (2014) Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biological Control 75, 8796.
Schwartz, M.D., Ahas, R. & Aasa, A. (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology 12, 343351.
Sgrò, C.M., Terblanche, J.S. & Hoffmann, A.A. (2016) What can plasticity contribute to insect responses to climate change? Annual Review of Entomology 61, 433451.
Smith, R.L. (1980) Evolution of exclusive postcopulatory paternal care in the insects. The Florida Entomologist 63, 6578.
Thackeray, S.J., Henrys, P.A., Hemming, D., Bell, J.R., Botham, M.S., Burthe, S., Helaouet, P., Johns, D.G., Jones, I.D., Leech, D.I. & Mackay, E.B. (2016) Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241245.
Torre Bueno, J.R.D.L. (1906) Life-histories of North American water-bugs. The Canadian Entomologist 38, 242252.
Tulp, I. & Schekkerman, H. (2008) Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61, 4860.
Visser, M.E. & Holleman, L.J.M. (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society of London Series B – Biological Sciences 268, 289294.
Voigt, W., Perner, J., Davis, A., Eggers, T., Schumacher, J., Bahrmann, R., Fabian, B., Heinrich, W., Kohler, G., Lichter, D., Marstaller, R. & Sander, F. (2003) Trophic levels are differentially sensitive to climate. Ecology 84, 24442453.
Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Hoegh-Guldberg, O. & Bairlein, F. (2002) Ecological responses to recent climate change. Nature 416, 389395.


Recent changes in reproductive phenology of a K-selected aquatic insect predator, Belostoma flumineum Say (Heteroptera, Belostomatidae)

  • S.L. Kight (a1), G.L. Coffey (a1), A.W. Tanner (a1), M.P. Dmytriw (a1), S.L. Tedesco (a1), J. Hoang (a1) and A.K. Aboagye (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed