Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T21:33:23.772Z Has data issue: false hasContentIssue false

Recent advances in transgenic arthropod technology

Published online by Cambridge University Press:  09 March 2007

M.G. Kramer*
Affiliation:
US Environmental Protection Agency, Office of Science Coordination and Policy, 1200 Pennsylvania Avenue NW, Mail Code 7201M, Washington, DC 20460, USA
*
*Fax: +1 202 564 8502 E-mail: kramer.melissa@epa.gov

Abstract

The ability to insert foreign genes into arthropod genomes has led to a diverse set of potential applications for transgenic arthropods, many of which are designed to advance public health or improve agricultural production. New techniques for expressing foreign genes in arthropods have now been successfully used in at least 18 different genera. However, advances in field biology are lagging far behind those in the laboratory, and considerable work is needed before deployment in nature can be a reality. A mechanism to drive the gene of interest though a natural population must be developed and thoroughly evaluated before any field release, but progress in this area has been limited. Likewise, serious consideration of potential risks associated with deployment in nature has been lacking. This review gives an overview of the most promising techniques for expressing foreign genes in arthropods, considers the potential risks associated with their deployment, and highlights the areas of research that are most urgently needed for the field to advance out of the laboratory and into practice.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelman, Z.N., Jasinskiene, N. & James, A.A. (2002) Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Molecular and Biochemical Parasitology 121, 110.CrossRefGoogle Scholar
Afanasiev, B.N. & Carlson, J.C. (2000) Densovirinae as gene transfer vehicles. Contributions to Microbiology 4, 3358.CrossRefGoogle ScholarPubMed
Afanasiev, B.N., Kozlov, Y.V., Carlson, J.O. & Beaty, B.J. (1994) Densovirus of Aedes aegypti as an expression vector in mosquito cells. Experimental Parasitology 79, 322339.CrossRefGoogle ScholarPubMed
Afanasiev, B.N., Ward, T.W., Beaty, B.J. & Carlson, J.C. (1999) Transduction of Aedes aegypti mosquitoes with vectors derived from Aedes densovirus. Virology 257, 6272.CrossRefGoogle ScholarPubMed
Aksoy, S. (2000) Tsetse–a haven for microorganisms. Parasitology Today 16, 114118.CrossRefGoogle ScholarPubMed
Aksoy, S. (2003) Control of tsetse flies and trypanosomes using molecular genetics. Veterinary Parasitology 115, 125145.CrossRefGoogle ScholarPubMed
Aksoy, S., Maudlin, I., Dale, C., Robinson, A.S. & O'Neill, S.L. (2001) Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends in Parasitology 17, 2935.CrossRefGoogle ScholarPubMed
Allen, M.L., O'Brochta, D.A., Atkinson, P.W. & Levesque, C.S. (2001) Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology 38, 701710.CrossRefGoogle ScholarPubMed
Allen-Miura, T., Afanasiev, B.N., Olson, K.E., Beaty, B.J. & Carlson, J.C. (1999) Packaging of AeDNV-GFP transducing virus by expression of densovirus structural proteins from a sindbis virus expression system. Virology 257, 5461.CrossRefGoogle ScholarPubMed
Anxolabéhère, D., Kidwell, M.G. & Periquet, G. (1988) Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. Molecular Biology and Evolution 5, 252269.Google ScholarPubMed
Atkinson, P.W. & James, A.A. (2002) Germline transformants spreading out to many insect species. Advances in Genetics 47, 4986.CrossRefGoogle ScholarPubMed
Aultman, K.S., Walker, E.D., Gifford, F., Severson, D.W., Beard, C.B. & Scott, T.W. (2000) Managing risks of arthropod vector research. Science 288, 23212322.CrossRefGoogle ScholarPubMed
Barreau, C., Jousset, F.X. & Cornet, M. (1994) An efficient and easy method of infection of mosquito larvae from virus-contaminated cell cultures. Journal of Virological Methods 49, 153156.CrossRefGoogle ScholarPubMed
Beard, C.B., Mason, P.W., Aksoy, S., Tesh, R.B. & Richards, F.F. (1992) Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus. American Journal of Tropical Medicine and Hygiene 46, 195200.CrossRefGoogle ScholarPubMed
Beard, C.B., Durvasula, R.V. & Richards, F.F. (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerging Infectious Diseases 4, 581591.CrossRefGoogle ScholarPubMed
Beaty, B.J. (2000) Genetic manipulation of vectors: a potential novel approach for control of vector-borne diseases. Proceedings of the National Academy of Sciences, USA 97, 1029510297.CrossRefGoogle ScholarPubMed
Benedict, M.Q., Scott, M.J. & Cockburn, A.F. (1994) High-level expression of the bacterial opd gene in Drosophila melanogaster: improved inducible insecticide resistance. Insect Molecular Biology 3, 247252.CrossRefGoogle ScholarPubMed
Benedict, M.Q., Salazar, C.E. & Collins, F.H. (1995) A new dominant selectable marker for genetic transformation; Hsp70-opd. Insect Biochemistry and Molecular Biology 25, 10611065.CrossRefGoogle ScholarPubMed
Berghammer, A.J., Klingler, M. & Wimmer, E.A. (1999) A universal marker for transgenic insects. Nature 402, 370.CrossRefGoogle ScholarPubMed
Blackman, R.K., Koehler, M.M., Grimaila, R. & Gelbar, W.M. (1989) Identification of a fully-functional hobo transposable element and its use for germ-line transformation of Drosophila. EMBO Journal 8, 211217.CrossRefGoogle ScholarPubMed
Braig, H.R. & Yan, G. (2002) The spread of genetic constructs in natural insect populations. pp. 251314in Letourneau, D.K. & Burrows, B.E. (Eds) Genetically engineered organisms: assessing environmental and human health effects. Boca Raton, Florida, CRC Press.Google Scholar
Brookfield, J.F.Y. (1986) The population biology of transposable elements. Philosophical Transactions of the Royal Society of London B 312, 217226.Google ScholarPubMed
Capy, P., Anxolabéhère, D. & Langin, T. (1994) The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends in Genetics 10, 712.CrossRefGoogle Scholar
Carareto, C.M., Kim, W., Wojciechowski, M.F., O'Grady, P., Prokchorova, A.V., Silva, J.C. & Kidwell, M.G. (1997) Testing transposable elements as genetic drive mechanisms using Drosophila P element constructs as a model system. Genetica 101, 1333.CrossRefGoogle ScholarPubMed
Catteruccia, F., Nolan, T., Loukeris, T.G., Blass, C., Savakis, C., Kafatos, F.C. & Crisanti, A. (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405, 959962.CrossRefGoogle ScholarPubMed
Catteruccia, F., Godfray, H.C.J. & Crisanti, A. (2003) Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299, 12251227.CrossRefGoogle ScholarPubMed
Cheng, Q. & Aksoy, S. (1999) Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Molecular Biology 8, 125132.CrossRefGoogle ScholarPubMed
Coates, C.J., Turney, C.L., Frommer, M., O'Brochta, D.A. & Atkinson, P.W. (1997) Interplasmid transposition of the mariner transposable element in non-drosophilid insects. Molecular and General Genetics 253, 728733.CrossRefGoogle ScholarPubMed
Coates, C.J., Jasinskiene, N., Miyashiro, L. & James, A.A. (1998) Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proceedings of the National Academy of Sciences, USA 95, 37483751.CrossRefGoogle ScholarPubMed
Coates, C.J., Jasinskiene, N., Pott, G.B. & James, A.A. (1999) Promoter-directed expression of recombinant fire-fly luciferase in the salivary glands of Hermes-transformed Aedes aegypti. Gene 226, 317325.CrossRefGoogle ScholarPubMed
Coates, C.J., Jasinskiene, N., Morgan, D., Tosi, L.R.O., Beverley, S.M. & James, A.A. (2000) Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology 30, 10031008.CrossRefGoogle ScholarPubMed
Collins, F.H. & Paskewitz, S.M. (1995) Malaria: current and future prospects for control. Annual Review of Entomology 40, 195219.CrossRefGoogle ScholarPubMed
Cornel, A.J., Benedict, M.Q., Rafferty, C.S., Howells, A.J. & Collins, F.H. (1997) Transient expression of the Drosophila melanogaster cinnabar gene rescues eye colour in the white eye (WE) strain of Aedes aegypti. Insect Biochemistry and Molecular Biology 27, 993997.CrossRefGoogle ScholarPubMed
Crampton, J.M., Stowell, S.L., Karras, M. & Sinden, R.E. (1999) Model systems to evaluate the use of transgenic haematophagous insects to deliver protective vaccines. Parassitologia 41, 473477.Google ScholarPubMed
Curtis, C.F. (1968) Possible use of translocations to fix desirable genes in insect pest populations. Nature 218, 368369.CrossRefGoogle ScholarPubMed
Curtis, C.F. (1994) The case for malaria control by genetic manipulation of its vectors. Parasitology Today 10, 371374.CrossRefGoogle ScholarPubMed
Daborn, P.J., Yen, J.L., Bogwitz, M.R., Le Goff, G., Feil, E., Jeffers, S., Tijet, N., Perry, T., Heckel, D., Batterham, P., Feyereisen, R., Wilson, T.G. & ffrench-Constant, R.H. (2002) A single P450 allele associated with insecticide resistance in Drosophila. Science 297, 22532256.CrossRefGoogle ScholarPubMed
Dale, C. & Welburn, S.C. (2001) The endosymbionts of tsetse flies: manipulating host-parasite interactions. International Journal for Parasitology 31, 628631.CrossRefGoogle ScholarPubMed
Daniels, S.B., Clark, S.H., Kidwell, M.G. & Chovnick, A. (1987) Genetic transformation of Drosophila melanogaster with an autonomous P element: phenotypic and molecular analyses of long-established transformed lines. Genetics 115, 711723.CrossRefGoogle ScholarPubMed
Daniels, S.B., Peterson, K.R., Strausbaugh, L.D., Kidwell, M.G. & Chovnick, A. (1990) Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124, 339355.CrossRefGoogle Scholar
Davies, J. (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264, 375382.CrossRefGoogle ScholarPubMed
de Lara Capurro, M., Coleman, J., Beerntsen, B.T., Myles, K.M., Olson, K.E., Rocha, E., Krettli, A.U. & James, A.A. (2000) Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. American Journal of Tropical Medicine and Hygiene 62, 427433.CrossRefGoogle ScholarPubMed
Durvasula, R.V., Gumbs, A., Panackal, A., Kruglov, O., Aksoy, S., Merrifield, R.B., Richards, F.F. & Beard, C.B. (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proceedings of the National Academy of Sciences, USA 94, 32743278.CrossRefGoogle ScholarPubMed
Durvasula, R.V., Gumbs, A., Panackal, A., Kruglov, O., Taneja, J., Kang, A.S., Cordon-Rosales, C., Richards, F.F., Whitham, R.G. & Beard, C.B. (1999a) Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhodnii. Medical and Veterinary Entomology 13, 115119.CrossRefGoogle ScholarPubMed
Durvasula, R.V., Kroger, A., Goodwin, M., Panackal, A., Kruglov, O., Taneja, J., Gumbs, A., Richards, F.F., Beard, C.B. & Cordon-Rosales, C. (1999b) Strategy for introduction of foreign genes into field populations of Chagas disease vectors. Annals of the Entomological Society of America 92, 937943.CrossRefGoogle Scholar
Enserink, M. (2000) Building a disease-fighting mosquito. Science 290, 440441.CrossRefGoogle ScholarPubMed
Finnegan, D.J. (1989) Eukaryotic transposable elements and genome evolution. Trends in Genetics 5, 103107.CrossRefGoogle ScholarPubMed
Franco, M., Rogers, M.E., Shimizu, C., Shike, H., Vogt, R.G. & Burns, J.C. (1998) Infection of lepidoptera with a pseudotyped retroviral vector. Insect Biochemistry and Molecular Biology 28, 819825.CrossRefGoogle ScholarPubMed
Fraser, M.J., Cary, L., Boonvisudhi, K. & Wang, H.G. (1995) Assay for movement of lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211, 397407.CrossRefGoogle ScholarPubMed
Galindo, M.I., Ladevèze, V., Lemeunier, F., Kalmes, R., Periquet, G. & Pascual, L. (1995) Spread of the autonomous transposable element hobo in the genome of Drosophila melanogaster. Molecular Biology and Evolution 12, 723734.Google ScholarPubMed
Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., Carlton, J.M., Pain, A., Nelson, K.E., Bowman, S., Paulsen, I.T., James, K., Eisen, J.A., Rutherford, K., Salzberg, S.L., Craig, A., Kyes, S., Chan, M.S., Nene, V., Shallom, S.J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M.W., Vaidya, A.B., Martin, D.M., Fairlamb, A.H., Fraunholz, M.J., Roos, D.S., Ralph, S.A., McFadden, G.I., Cummings, L.M., Subramanian, G.M., Mungall, C., Venter, J.C., Carucci, D.J., Hoffman, S.L., Newbold, C., Davis, R.W., Fraser, C.M. & Barrell, B. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498511.CrossRefGoogle ScholarPubMed
Giraud, C., Devauchelle, G. & Bergoin, M. (1992) The densovirus of Junonia coenia (Jc DNV) as an insect cell expression vector. Virology 186, 207218.CrossRefGoogle ScholarPubMed
Good, A.G., Meister, G.A., Borck, H.W., Grigliatti, T.A. & Hickey, D.A. (1989) Rapid spread of transposable P elements in experimental populations of Drosophila melanogaster. Genetics 122, 387396.CrossRefGoogle ScholarPubMed
Gorman, M.J., Severson, D.W., Cornel, A.J., Collins, F.H. & Paskewitz, S.M. (1997) Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anopheles gambiae. Genetics 146, 965971.CrossRefGoogle ScholarPubMed
Grossman, G.L., Rafferty, C.S., Clayton, J.R., Stevens, T.K., Mukabayire, O. & Benedict, M.Q. (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Molecular Biology 10, 597604.CrossRefGoogle ScholarPubMed
Gubler, D.J. (1993) Release of exotic genomes. Journal of the American Mosquito Control Association 9, 104.Google ScholarPubMed
Hahn, C.S., Yahn, Y.S., Braciale, T.J. & Rice, C.M. (1992) Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proceedings of the National Academy of Sciences, USA 89, 26792683.CrossRefGoogle ScholarPubMed
Handler, A.M. & Harrell, R.A.I. (2001) Transformation of the Caribbean fruit fly, Anastrepha suspensa, with a piggyBac vector marked with polyubiquitin-regulated GFP. Insect Biochemistry and Molecular Biology 31, 199205.CrossRefGoogle ScholarPubMed
Handler, A.M. & McCombs, S.D. (2000) The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements in its genome. Insect Molecular Biology 9, 605612.CrossRefGoogle ScholarPubMed
Handler, A.M., McCombs, S.D., Fraser, M.J. & Saul, S.H. (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proceedings of the National Academy of Sciences, USA 95, 75207525.CrossRefGoogle ScholarPubMed
Hao, Z., Kasumba, I., Lehane, M.J., Gibson, W.C., Kwon, J. & Aksoy, S. (2001) Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proceedings of the National Academy of Sciences, USA 98, 1264812653.CrossRefGoogle ScholarPubMed
Haring, E., Hagemann, S. & Pinsker, W. (2000) Ancient and recent horizontal invasions of drosophilids by P elements. Journal of Molecular Evolution 51, 577586.CrossRefGoogle ScholarPubMed
Heath, B.D., Butcher, R.D., Whitfield, W.G. & Hubbard, S.F. (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Current Biology 9, 313316.CrossRefGoogle ScholarPubMed
Hediger, M., Niessen, M., Wimmer, E.A., Dübendorfer, A. & Bopp, D. (2001) Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Molecular Biology 10, 113119.CrossRefGoogle ScholarPubMed
Heinrich, J.C., Li, X., Henry, R.A., Haack, N., Stringfellow, L., Heath, A.C.G. & Scott, M.J. (2002) Germ-line transformation of the Australian sheep blowfly Lucilia cuprina. Insect Molecular Biology 11, 110.CrossRefGoogle ScholarPubMed
Higgs, S., Rayner, J.O., Olson, K.E., Davis, B.S., Beaty, B.J. & Blair, C.D. (1998) Engineered resistance in Aedes aegypti to a West African and a South American strain of yellow fever virus. American Journal of Tropical Medicine and Hygiene 58, 663670.CrossRefGoogle Scholar
Ho, W.K., Meng, Z.Q., Lin, H.R., Poon, C.T., Leung, Y.K., Yan, K.T., Dias, N., Che, A.P., Liu, J., Zheng, W.M., Sun, Y. & Wong, A.O. (1998) Expression of grass carp growth hormone by baculovirus in silkworm larvae. Biochimica et Biophysica Acta 1381, 331339.CrossRefGoogle ScholarPubMed
Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R., Nusskern, D.R., Wincker, P., Clark, A.G., Ribeiro, J.M., Wides, R., Salzberg, S.L., Loftus, B., Yandell, M., Majoros, W.H., Rusch, D.B., Lai, Z., Kraft, C.L., Abril, J.F., Anthouard, V., Arensburger, P., Atkinson, P.W., Baden, H., de Berardinis, V., Baldwin, D., Benes, V., Biedler, J., Blass, C., Bolanos, R., Boscus, D., Barnstead, M., Cai, S., Center, A., Chatuverdi, K., Christophides, G.K., Chrystal, M.A., Clamp, M., Cravchik, A., Curwen, V., Dana, A., Delcher, A., Dew, I., Evans, C.A., Flanigan, M., Grundschober-Freimoser, A., Friedli, L., Gu, Z., Guan, P., Guigo, R., Hillenmeyer, M.E., Hladun, S.L., Hogan, J.R., Hong, Y.S., Hoover, J., Jaillon, O., Ke, Z., Kodira, C., Kokoza, E., Koutsos, A., Letunic, I., Levitsky, A., Liang, Y., Lin, J.J., Lobo, N.F., Lopez, J.R., Malek, J.A., McIntosh, T.C., Meister, S., Miller, J., Mobarry, C., Mongin, E., Murphy, S.D., O'Brochta, D.A., Pfannkoch, C., Qi, R., Regier, M.A., Remington, K., Shao, H., Sharakhova, M.V., Sitter, C.D., Shetty, J., Smith, T.J., Strong, R., Sun, J., Thomasova, D., Ton, L.Q., Topalis, P., Tu, Z., Unger, M.F., Walenz, B., Wang, A., Wang, J., Wang, X., Woodford, K.J., Wortman, J.R., Wu, M., Yao, A., Zdobnov, E.M., Zhang, H., Zhao, S., Zhu, S.C., Zhimulev, I., Coluzzi, M., delle, Torre A., Roth, C.W., Louis, C., Kalush, F., Mural, R.J., Myers, E.W., Adams, M.D., Smith, H.O., Broder, S., Gardner, M.J., Fraser, C.M., Birney, E., Bork, P., Brey, P.T., Venter, J.C., Weissenbach, J., Kafatos, F.C., Collins, F.H. & Hoffman, S.L. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129149.CrossRefGoogle ScholarPubMed
Houck, M.A., Clark, J.B., Peterson, K.R. & Kidwell, M.G. (1991) Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis. Science 253, 11251128.CrossRefGoogle ScholarPubMed
Hoy, M.A. (1995) Impact of risk analysis on pest-management programs employing transgenic arthropods. Parasitology Today 11, 229232.CrossRefGoogle Scholar
Hoy, M.A. (2000) Transgenic arthropods for pest management programs: risks and realities. Experimental and Applied Acarology 24, 463495.CrossRefGoogle ScholarPubMed
Hoy, M.A., Gaskalla, R.D., Capinera, J.L. & Keierleber, C.N. (1997) Laboratory containment of transgenic arthropods. American Entomologist 43, 206256.CrossRefGoogle Scholar
Huigens, M.E., Luck, R.F., Klaassen, R.H.G., Maas, M.F.P.M., Timmermans, M.J.T.N. & Stouthamer, R. (2000) Infectious parthenogenesis. Nature 405, 178179.CrossRefGoogle ScholarPubMed
Ito, J., Ghosh, A.K., Moreira, L.A., Wimmer, E.A. & Jacobs-Lorena, M. (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417, 452455.CrossRefGoogle ScholarPubMed
Jacobson, J.W., Medhora, M.M. & Hartl, D.L. (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proceedings of the National Academy of Sciences, USA 83, 86848688.CrossRefGoogle ScholarPubMed
Jasinskiene, N., Coates, C.J., Benedict, M.Q., Cornel, A.J., Salazar, Rafferty C., James, A.A. & Collins, F.H. (1998) Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proceedings of the National Academy of Sciences, USA 95, 37433747.CrossRefGoogle ScholarPubMed
Johanowicz, D.L. & Hoy, M.A. (1999) Wolbachia infection dynamics in experimental laboratory populations of Metaseiulus occidentalis. Entomologia Experimentalis et Applicata 93, 259268.CrossRefGoogle Scholar
Johnson, B.W., Olson, K.E., Allen-Miura, T., Rayms-Keller, A., Carlson, J.O., Coates, C.J., Jasinskiene, N., James, A.A., Beaty, B.J. & Higgs, S. (1999) Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA. Proceedings of the National Academy of Sciences, USA 96, 1339913403.CrossRefGoogle ScholarPubMed
Jordan, T.V., Shike, H., Boulo, V., Cedeno, V., Fang, Q., Davis, B.S., Jacobs-Lorena, M., Higgs, S., Fryxell, K.J. & Burns, J.C. (1998) Pantropic retroviral vectors mediate somatic cell transformation and expression of foreign genes in dipteran insects. Insect Molecular Biology 7, 215222.CrossRefGoogle ScholarPubMed
Kadonookuda, K., Yamamoto, M., Higashino, Y., Taniai, K., Kato, Y., Chowdhury, S., Xu, J.H., Choi, S., Sugiyama, M., Nakashima, K., Maeda, S. & Yamakawa, M. (1995) Baculovirus-mediated production of the human growth hormone in larvae of the silkworm, Bombyx mori. Biochemical and Biophysical Research Communications 213, 389396.CrossRefGoogle ScholarPubMed
Kaminker, J.S., Bergman, C.M., Kronmiller, B., Carlson, J., Svirskas, R., Patel, S., Frise, E., Wheeler, D.A., Lewis, S.E., Rubin, G.M., Ashburner, M. & Celniker, S.E. (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biology 3, 0084.10084.20.CrossRefGoogle ScholarPubMed
Karpf, A.R., Lenches, E., Strauss, E.G., Strauss, J.H. & Brown, D.T. (1997) Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. Journal of Virology 71, 71197123.CrossRefGoogle ScholarPubMed
Kidwell, M.G. (1992) Horizontal transfer of P elements and other short inverted repeat transposons. Genetica 86, 275286.CrossRefGoogle ScholarPubMed
Kidwell, M.G. & Lisch, D. (1997) Transposable elements as sources of variation in animals and plants. Proceedings of the National Academy of Sciences, USA 94, 77047711.CrossRefGoogle ScholarPubMed
Kidwell, M.G. & Ribeiro, J.M. (1992) Can transposable elements be used to drive disease refractoriness genes into vector populations? Parasitology Today 8, 325329.CrossRefGoogle ScholarPubMed
Kidwell, M.G. & Wattam, A.R. (1998) An important step forward in the genetic manipulation of mosquito vectors of human disease. Proceedings of the National Academy of Sciences, USA 95, 33493350.CrossRefGoogle ScholarPubMed
Kidwell, M.G., Novy, J.B. & Feeley, S.M. (1981) Rapid unidirectional change of hybrid dysgenesis potential in Drosophila. Journal of Heredity 72, 3238.CrossRefGoogle ScholarPubMed
Kimura, K. (2001) Transposable element-mediated transgenesis in insects beyond Drosophila. Journal of Neurogenetics 15, 179192.CrossRefGoogle ScholarPubMed
Kiyasu, P.K. & Kidwell, M.G. (1984) Hybrid dysgenesis in Drosophila melanogaster: the evolution of mixed P and M populations maintained at high temperature. Genetical Research 44, 251259.CrossRefGoogle Scholar
Kokoza, V., Ahmed, A., Cho, W., Jasinskiene, N., James, A.A. & Raikhel, A. (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proceedings of the National Academy of Sciences, USA 97, 91449149.CrossRefGoogle ScholarPubMed
Ladevèze, V., Galindo, I., Chaminade, N., Pascual, L., Periquet, G. & Lemeunier, F. (1998) Transmission pattern of hobo transposable element in transgenic lines of Drosophila melanogaster. Genetical Research 71, 97107.CrossRefGoogle ScholarPubMed
Ladevèze, V., Aulard, S., Chaminade, N., Biemont, C., Periquet, G. & Lemeunier, F. (2001) Dynamics of the hobo transposable element in transgenic lines of Drosophila melanogaster. Genetical Research 77, 135142.CrossRefGoogle ScholarPubMed
Lawrence, J.G. & Ochman, H. (1998) Molecular archaeology of the Escherichia coli genome. Proceedings of the National Academy of Sciences, USA 95, 94139417.CrossRefGoogle ScholarPubMed
Liao, G.C., Rehm, E.J. & Rubin, G.M. (2000) Insertion site preferences of the P transposable element in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 97, 33473351.CrossRefGoogle Scholar
Lidholm, D., Lohe, A.R. & Hartl, D.L. (1993) The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics 134, 859868.CrossRefGoogle ScholarPubMed
Lindquist, A.W. (1955) The use of gamma radiation for control or eradication of the screw-worm. Journal of Economic Entomology 48, 467469.CrossRefGoogle Scholar
Lohe, A.R., Moriyama, E.N., Lidholm, D.A. & Hartl, D.L. (1995) Horizontal transmission, vertical inactivation, and stochastic loss of mariner -like transposable elements. Molecular Biology and Evolution 12, 6272.CrossRefGoogle ScholarPubMed
Loukeris, T.G., Livadaras, I., Arcà, B., Zabalou, S. & Savakis, C. (1995) Gene transfer into the Medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270, 20022005.CrossRefGoogle ScholarPubMed
Lozovskaya, E.R., Nurminsky, D.I., Hartl, D.L. & Sullivan, D.T. (1996) Germline transformation of Drosophila virilis mediated by the transposable element hobo. Genetics 142, 173177.CrossRefGoogle ScholarPubMed
Maruyama, K. & Hartl, D.L. (1991) Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. Journal of Molecular Evolution 33, 514524.CrossRefGoogle ScholarPubMed
Meister, G.A. & Grigliatti, T.A. (1993) Rapid spread of a P element/Adh gene construct through experimental populations of Drosophila melanogaster. Genome 36, 11691175.CrossRefGoogle Scholar
Michel, K., Stamenova, A., Pinkerton, A.C., Franz, G., Robinson, A.S., Gariou-Papalexiou, A., Zacharopoulou, A., O'Brochta, D.A. & Atkinson, P.W. (2001) Hermes-mediated germ-line transformation of the Mediterranean fruit fly Ceratitis capitata. Insect Molecular Biology 10, 155162.CrossRefGoogle ScholarPubMed
Moreira, L.A., Edwards, M.J., Adhami, F., Jasinskiene, N., James, A.A. & Jacobs-Lorena, M. (2000) Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proceedings of the National Academy of Sciences, USA 97, 1089510898.CrossRefGoogle ScholarPubMed
Mori, H. & Tsukada, M. (2000) New silk protein: modification of silk protein by gene engineering for production of biomaterials. Reviews in Molecular Biotechnology 74, 95103.CrossRefGoogle ScholarPubMed
Mori, H., Yamao, M., Nakazawa, H., Sugahara, H., Shirai, N., Matsubara, F., Sumida, M. & Imamura, T. (1995) Transovarian transmission of a foreign gene in the silkworm, Bombyx mori, by Autographa californica nuclear polyhedrosis virus. Bio/Technology 13, 10051007.Google ScholarPubMed
Muir, W.M. & Howard, R.D. (2002) Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms. Transgenic Research 11, 101114.CrossRefGoogle ScholarPubMed
National Institutes of Health (2002) Guidelines for research involving recombinant DNA molecules. http://www4.od. nih.gov/oba/rac/guidelines_02/NIH_Guidelines_Apr_02.htm#_Toc7261556Google Scholar
National Research Council (2002) Environmental effects of transgenic plants: the scope and adequacy of regulation. 320 pp. Washington, DC, National Academy Press.Google Scholar
Nolan, T., Bower, T.M., Brown, A.E., Crisanti, A. & Catteruccia, F. (2002) piggyBac -mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. Journal of Biological Chemistry 277, 87598762.CrossRefGoogle ScholarPubMed
O'Brochta, D.A. & Atkinson, P.W. (1996) Transposable elements and gene transformation in non-drosophilid insects. Insect Biochemistry and Molecular Biology 26, 739753.CrossRefGoogle ScholarPubMed
O'Brochta, D.A., Warren, W.D., Saville, K.J. & Atkinson, P.W. (1994) Interplasmid transposition of Drosophila hobo elements in non-drosophilid insects. Molecular and General Genetics 244, 914.CrossRefGoogle ScholarPubMed
O'Brochta, D.A., Atkinson, P.W. & Lehane, M.J. (2000) Transformation of Stomoxys calcitrans with a Hermes gene vector. Insect Molecular Biology 9, 531538.CrossRefGoogle ScholarPubMed
O'Brochta, D.A., Warren, W.D., Saville, K.J. & Atkinson, P.W. (1996) Hermes, a function non-drosophilid insect gene vector from Musca domestica. Genetics 142, 907914.CrossRefGoogle Scholar
O'Hare, K. & Rubin, G.M. (1983) Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 2535.CrossRefGoogle ScholarPubMed
Olson, K.E., Higgs, S., Gaines, P.J., Powers, A.M., Davis, B.S., Kamrud, K.I., Carlson, J.O., Blair, C.D. & Beaty, B.J. (1996) Genetically engineered resistance to Dengue virus transmission in mosquitoes. Science 272, 884886.CrossRefGoogle ScholarPubMed
Olson, K.E., Myles, K.M., Seabaugh, R.C., Higgs, S., Carlson, J.O. & Beaty, B.J. (2000) Development of a Sindbis virus expression system that efficiently expresses green fluorescent protein in midguts of Aedes aegypti following per os infection. Insect Molecular Biology 9, 5765.CrossRefGoogle ScholarPubMed
Pascual, L. & Periquet, G. (2003) Distribution of hobo transposable elements in natural populations of Drosophila melanogaster. Molecular Biology and Evolution 8, 282296.Google Scholar
Peloquin, J.J., Thibault, S.T., Staten, R. & Miller, T.A. (2000) Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element. Insect Molecular Biology 9, 323333.CrossRefGoogle ScholarPubMed
Pennisi, E. (1998) Versatile gene uptake system found in cholera bacterium. Science 280, 521522.CrossRefGoogle ScholarPubMed
Perera, O.P., Harrell, R.A.I. & Handler, A.M. (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Molecular Biology 11, 291297.CrossRefGoogle ScholarPubMed
Pierro, D.J., Myles, K.M., Foy, B.D., Beaty, B.J. & Olson, K.E. (2003) Development of an orally infectious Sindbis virus transducing system that efficiently disseminates and expresses green fluorescent protein in Aedes aegypti. Insect Molecular Biology 12, 107116.CrossRefGoogle ScholarPubMed
Pinkerton, A.C., O'Brochta, D.A. & Atkinson, P.W. (1996) Mobility of hAT transposable elements in the Old World bollworm, Helicoverpa armigera. Insect Molecular Biology 5, 223227.CrossRefGoogle ScholarPubMed
Pinkerton, A.C., Michel, K., O'Brochta, D.A. & Atkinson, P.W. (2000) Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Molecular Biology 9, 110.CrossRefGoogle ScholarPubMed
Powers, A.M., Kamrud, K.I., Olson, K.E., Higgs, S., Carlson, J.O. & Beaty, B.J. (1996) Molecularly engineered resistance to California serogroup virus replication in mosquito cells and mosquitoes. Proceedings of the National Academy of Sciences, USA 93, 41874191.CrossRefGoogle ScholarPubMed
Presnail, J.K. & Hoy, M.A. (1996) Maternal microinjection of the endoparasitoid Cardiochiles diaphaniae (Hymenoptera: Braconidae). Annals of the Entomological Society of America 89, 576580.CrossRefGoogle Scholar
Presnail, J.K., Jeyaprakash, A., Li, J. & Hoy, M.A. (1997) Genetic analysis of four lines of Metaseiulus occidentalis (Acari: Phytoseiidae) transformed by maternal microinjection. Annals of the Entomological Society of America 90, 237245.CrossRefGoogle Scholar
Preston, C.R. & Engels, W.R. (1989) Spread of P transposable elements in inbred lines of Drosophila melanogaster. Progress in Nucleic Acid Research and Molecular Biology 36, 7185.CrossRefGoogle ScholarPubMed
Ribeiro, J.M. & Kidwell, M.G. (1994) Transposable elements as population drive mechanisms: specification of critical parameter values. Journal of Medical Entomology 31, 1016.CrossRefGoogle ScholarPubMed
Robertson, H.M. (1993) The mariner transposable element is widespread in insects. Nature 362, 241245.CrossRefGoogle ScholarPubMed
Robertson, H.M. & Lampe, D.J. (1995) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Molecular Biology and Evolution 12, 850862.Google ScholarPubMed
Robinson, K.O., Ferguson, H.J., Cobey, S., Vaessin, H. & Smith, B.H. (2000) Sperm-mediated transformation of the honey bee, Apis mellifera. Insect Molecular Biology 9, 625634.CrossRefGoogle ScholarPubMed
Rubin, G.M. & Spradling, A.C. (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218, 348353.CrossRefGoogle ScholarPubMed
Rubin, E., Lithwick, G. & Levy, A.A. (2001) Structure and evolution of the hAT transposon superfamily. Genetics 158, 949957.CrossRefGoogle ScholarPubMed
Severson, D.W., Thathy, V., Mori, A., Zhang, Y. & Christensen, B.M. (1995) Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti. Genetics 139, 17111717.CrossRefGoogle ScholarPubMed
Silva, J.C. & Kidwell, M.G. (2000) Horizontal transfer and selection in the evolution of P elements. Molecular Biology and Evolution 17, 15421557.CrossRefGoogle ScholarPubMed
Spielman, A. (1994) Why entomological antimalaria research should not focus on transgenic mosquitoes. Parasitology Today 10, 374376.CrossRefGoogle Scholar
Spielman, A., Beier, J.C. & Kiszewski, A.E. (2002) Ecological and community considerations in engineering arthropods to suppress vector-borne disease. pp. 315329in Letourneau, D.K. & Burrows, B.E. (Eds) Genetically engineered organisms: assessing environmental and human health effects. Boca Raton, Florida, CRC Press.Google Scholar
Spradling, A.C. & Rubin, E. (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218, 341347.CrossRefGoogle ScholarPubMed
Stacey, S.N., Lansman, R.A., Brock, H.W. & Grigliatti, T.A. (1986) Distribution and conservation of mobile elements in the genus Drosophila. Molecular Biology and Evolution 3, 522534.Google ScholarPubMed
Strauss, E.G., Rice, C.M. & Strauss, J.H. (1984) Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology 133, 92110.CrossRefGoogle ScholarPubMed
Sumitani, M., Yamamoto, D.S., Oishi, K., Lee, J.M. & Hatakeyama, M. (2003) Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac -derived vector. Insect Biochemistry and Molecular Biology 33, 449458.CrossRefGoogle ScholarPubMed
Sundararajan, P., Atkinson, P.W. & O'Brochta, D.A. (1999) Transposable element interactions in insects: crossmobilization of hobo and Hermes. Insect Molecular Biology 8, 359368.CrossRefGoogle ScholarPubMed
The American Committee of Medical Entomology of the American Society of Tropical Medicine and Hygiene (2002) Arthropod containment guidelines (version 3.1).Google Scholar
Toshiki, T., Chantal, T., Corinne, R., Toshio, K., Eappen, A., Mari, K., Natuo, K., Jean-Luc, T., Bernard, M., Gérard, C., Paul, S., Malcolm, F., Jean-Claude, P. & Pierre, C. (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnology 18, 8184.Google Scholar
Tsien, R.Y. (1998) The green fluorescent protein. Annual Review of Biochemistry 67, 509544.CrossRefGoogle ScholarPubMed
Turelli, M. & Hoffmann, A.A. (1999) Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Molecular Biology 8, 243255.Google ScholarPubMed
Ward, T.W., Jenkins, M.S., Afanasiev, B.N., Edwards, M.J., Duda, B.A., Suchman, E., Jacobs-Lorena, M., Beaty, B.J. & Carlson, J.O. (2001) Aedes aegypti transducing densovirus pathogenesis and expression in Aedes aegypti and Anopheles gambiae larvae. Insect Molecular Biology 10, 397405.CrossRefGoogle ScholarPubMed
Yamao, M., Katayama, N., Nakazawa, H., Yamakawa, M., Hayashi, Y., Hara, S., Kamei, K. & Mori, H. (2002) Gene targeting in the silkworm by use of a baculovirus. Genes and Development 13, 511516.CrossRefGoogle Scholar
Yang, G., Chen, Z., Cui, D., Li, B. & Wu, X. (2002) Production of recombinant human calcitonin from silkworm (B. mori) larvae infected by baculovirus. Current Pharmaceutical Design 9, 323329.Google ScholarPubMed
Yoshiyama, M., Honda, H. & Kimura, K. (2000) Successful transformation of the housefly, Musca domestica (Diptera: Muscidae) with the transposable element, mariner. Applied Entomology and Zoology 35, 321325.CrossRefGoogle Scholar
Zheng, L., Cornel, A.J., Wang, R., Erfle, H., Voss, H., Ansorge, W., Kafatos, F.C. & Collins, F.H. (1997) Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science 276, 425428.CrossRefGoogle ScholarPubMed