Skip to main content Accessibility help
×
Home

Rapid diagnosis of the economically important fruit fly, Bactrocera correcta (Diptera: Tephritidae) based on a species-specific barcoding cytochrome oxidase I marker

  • F. Jiang (a1), Z.H. Li (a1), Y.L. Deng (a2), J.J. Wu (a3), R.S. Liu (a1) (a4) and N. Buahom (a1)...

Abstract

The guava fruit fly, Bactrocera correcta (Bezzi) (Diptera: Tephritidae), is an invasive pest of fruit and vegetable crops that primarily inhabits Southeast Asia and which has the potential to become a major threat within both the Oriental and Australian oceanic regions as well as California and Florida. In light of the threat posed, it is important to develop a rapid, accurate and reliable method to identify B. correcta in quarantine work in order to provide an early warning to prevent its widespread invasion. In the present study, we describe a species-specific polymerase chain reaction assay for the diagnosis of B. correcta using mitochondrial DNA cytochrome oxidase I (mtDNA COI) barcoding genes. A B. correcta-specific primer pair was designed according to variations in the mtDNA COI barcode sequences among 14 fruit fly species. The specificity and sensitivity of the B. correcta-specific primer pair was tested based on the presence or absence of a band in the gel profile. A pair of species-specific B. correcta primers was successfully designed and named BCOR-F/BCOR-R. An ∼280 bp fragment was amplified from specimens belonging to 17 geographical populations and four life stages of B. correcta, while no such diagnostic bands were present in any of the 14 other related fruit fly species examined. Sensitivity test results demonstrated that successful amplification can be obtained with as little as 1 ng μl−1 of template DNA. The species-specific PCR analysis was able to successfully diagnose B. correcta, even in immature life stages, and from adult body parts. This method proved to be a robust single-step molecular technique for the diagnosis of B. correcta with respect to potential plant quarantine.

Copyright

Corresponding author

* Author for correspondence Phone: +86-10-62731299 Fax: +86-10-62733404 E-mail: lizh@cau.edu.cn

References

Hide All
Allwood, A.J. & Drew, R.A.I. (1996) Management of fruit flies in the Pacific. A regional symposium, Nadi, Fiji 28–31 October 1996, 23.
Anderson, P.J. & Dixon, W.N. (2008) Triology 47, No. 1, 7. Available online at http://www.freshfromflorida.com/pi/enpp/triology/archive/4701.pdf (accessed 2 September 2011).
Armstrong, K.F., Cameron, C.M. & Frampton, E.R. (1997) Fruit fly (Diptera: Tephritidae) species identification: a rapid diagnostic technique for quarantine application. Bulletin of Entomological Research 87, 111118.
Asokan, R., Krishna Kumar, N.K. & Abraham, V. (2007) Molecular identification of fruit flies, Bactrocera spp. (Diptera: Tephritidae) using mitochondrial cytochrome oxidase I. Current Science 93, 16681669.
Barcenas, N.M., Unruh, T.R. & Neven, L.G. (2005) DNA diagnostics to identify internal feeders (Lepidoptera: Tortricidae) of pome fruits of quarantine importance. Journal of Economic Entomology 98, 299306.
Chua, T.H., Song, B.K. & Chong, Y.V. (2010) Development of allele-specific single-nucleotide polymorphism-based polymerase chain reaction markers in cytochrome oxidase I for the differentiation of Bactrocera papaya and Bactrocera carambolae (Diptera: Tephritidae). Journal of Economic Entomology 103, 19941999.
CPC, CABI. (2012) Crop Protection Compendium. Available online at http://www.cabi.org/cpc/.
Drew, R.A.I. & Raghu, S. (2002) The fruit fly fauna (Diptera: Tephritidae: Dacinae) of the rainforest habitat of the Western Ghats, India. Raffles Bulletin of Zoology 50, 327352.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.
Hebert, P.D.N., Cywinska, A., Ball, S.L. & DeWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings the Royal Society B 270, 313321.
Hosseini, R., Keller, M.A., Schmidt, O. & Framenau, V.W. (2007) Molecular identification of wolf spiders (Araneae: Lycosidae) by multiplex polymerase chain reaction. Biological Control 40, 128135.
Liang, G.X., Yang, G.H., Liang, F., Si Tu, B.L. & Liang, X.D. (1996) The Species of Dacini (Diptera: Tephritidae) of Asian-Pacific region. Guangzhou, China, Guangdong Science and Technology Press.
Liu, L.J., Liu, J.Q., Wang, Q.L., Ndayiragije, P., Ntahimpera, A., Nkubaye, E., Yang, Q.Q. & Li, Z.H. (2011) Identification of Bactrocera invadens (Diptera: Tephritidae) from Burundi, based on morphological characteristics and DNA barcode. African Journal of Biotechnology 10, 1362313630.
Muraji, M. & Nakahara, S. (2001) Phylogenetic relationships among fruit flies, Bactrocera (Diptera, Tephritidae), based on the mitochondrial rDNA sequences. Insect Molecular Biology 10, 549559.
Tan, K.H., Tokushima, I., Ono, H. & Nishida, R. (2011) Comparison of phenylpropanoid volatiles in male rectal pheromone gland after methyl eugenol consumption, and molecular phylogenetic relationship of four global pest fruit fly species: Bactrocera invadens, B. dorsalis, B. correcta and B. zonata . Chemoecology 21, 2533.
Vijaysegaran, S. (1996) Fruit fly research and development in tropical Asia. pp. 21–29 in Management of Fruit Flies in the Pacific–A Regional Symposium.
Wang, W.X., Yu, F., Zhang, Z. & Lin, X.H. (2010) Advances in rapid identification methods for the quarantined fruit flies. Plant Protection 36, 3943.
Wang, X.J. (1996) The fruit flies (Diptera: Tephritidae) of the East Asian Region. Acta Zootaxonomica Sinica 21, 1338.
Wang, X.J. & Zhao, M.Z. (1989) Species of genus Dacus Fabricius (Diptera: Tephritidae) from China. Acta Zootaxonomica Sinica 14, 209219.
Weems, H.W. & Fasulo, T.R. (2011) Guava Fruit Fly, Bactrocera correcta (Bezzi) (Insecta: Diptera: Tephritidae). University of Florida IFAS Extension, EENY200/IN357.
White, I.M. & Elson-Harris, M.M. (1992) Fruit Flies of Economic Significance: Their Identification and Bionomics. Wallingford, Oxon, UK, CAB International.
Wu, J.J., Hu, X.N., Zhao, J.P., Liang, F. & Liang, G.Q. (2005) Rapid identification among 9 species of quarantine fruit flies (Diptera: Tephritidae) by PCR-RFLP. Plant Quarantine 19, 26.
Yang, Q.Q., Kucerova, Z., Li, Z.H., Kalinovic, I., Stejskal, V., Opit, G. & Cao, Y. (2012) Diagnosis of Liposcelis entomophila (Insecta: Psocodea: Liposcelididae) based on morphological characteristics and DNA barcodes. Journal of Stored Products Research 48, 120125.
Yu, D.J., Deng, Z.P., Chen, Z.L., Jiao, Y., Zhang, G.M., Kang, L., Yang, W.D. & Jin, X.Z. (2004 a) Method of the polymerase chain reaction for quarantine and identification of Bactrocera correcta . Plant Quarantine 18, 7376.
Yu, D.J., Zhang, G.M., Chen, Z.L., Zhang, R.J. & Yin, W.Y. (2004 b) Rapid identification of Bactrocera latifrons (Dipt., Tephritidae) by real-time PCR using SYBR Green chemistry. Journal of Applied Entomology 128, 670676.
Yu, D.J., Chen, Z.L., Zhang, R.J. & Yin, W.Y. (2005) Real-time qualitative PCR for the inspection and identification of Bactrocera philippinensis and Bactrocera occipitalis (Diptera: Tephritidae) using SYBR Green assay. The Raffles Bulletin of Zoology 53, 7378.
Zhang, G.F., Meng, X.Q., Min, L., Qiao, W.N. & Wan, F.H. (2012) Rapid diagnosis of the invasive species, Frankliniella occidentalis (Pergande): a species-specific COI marker. Journal of Applied Entomology 136, 410420.
Zhang, L. & Zhang, Z.Y. (2007) Random amplified polymorphic DNA identification of six Bactrocera (Diptera: Tephritidae) species in Yunnan Province of Southwest China. Chinese Journal of Applied Ecology 18, 11631166.
Zhao, J.P., Liang, F., Liang, G.Q., Hu, X.N., Ma, J. & Lin, L. (2007) Morphological identification of Bactrocera correcta and Bactrocera zonata . Chinese Bulletin of Entomology 44, 904905.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed