Skip to main content Accessibility help
×
Home

Novel microsatellite markers for the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) and effects of null alleles on population genetics analyses

  • W. Song (a1) (a2), L.-J. Cao (a1), Y.-Z. Wang (a1) (a3), B.-Y. Li (a1) (a3) and S.-J. Wei (a1)...

Abstract

The oriental fruit moth (OFM) Grapholita molesta (Lepidoptera: Tortricidae) is an important economic pest of stone and pome fruits worldwide. We sequenced the OFM genome using next-generation sequencing and characterized the microsatellite distribution. In total, 56,674 microsatellites were identified, with 11,584 loci suitable for primer design. Twenty-seven polymorphic microsatellites, including 24 loci with trinucleotide repeat and three with pentanucleotide repeat, were validated in 95 individuals from four natural populations. The allele numbers ranged from 4 to 40, with an average value of 13.7 per locus. A high frequency of null alleles was observed in most loci developed for the OFM. Three marker panels, all of the loci, nine loci with the lowest null allele frequencies, and nine loci with the highest null allele frequencies, were established for population genetics analyses. The null allele influenced estimations of genetic diversity parameters but not the OFM's genetic structure. Both a STRUCTURE analysis and a discriminant analysis of principal components, using the three marker panels, divided the four natural populations into three groups. However, more individuals were incorrectly assigned by the STRUCTURE analysis when the marker panel with the highest null allele frequency was used compared with the other two panels. Our study provides empirical research on the effects of null alleles on population genetics analyses. The microsatellites developed will be valuable markers for genetic studies of the OFM.

Copyright

Corresponding author

*Author for correspondence Phone: +86 010 -51503439 Fax: +86 010-51503899 E-mail: shujun268@163.com

References

Hide All
A'Hara, S. & Cottrell, J. (2013) Development and characterisation of ten polymorphic microsatellite markers for the pine-tree lappet moth Dendrolimus pini (Lepidoptera: Lasiocampidae). Conservation Genetics Resources 5, 11351137.
An, B., Deng, X., Shi, H., Ding, M., Lan, J., Yang, J. & Li, Y. (2014) Development and characterization of microsatellite markers for rice leaffolder, Cnaphalocrocis medinalis (Guenee) and cross-species amplification in other Pyralididae. Molecular Biology Reports 41, 11511156.
Antao, T., Lopes, A., Lopes, R.J., Beja-Pereira, A. & Luikart, G. (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9, 323.
Anthony, N., Gelembiuk, G., Raterman, D., Nice, C. & R. Ffrench-Constant (2001) Isolation and characterization of microsatellite markers from the endangered Karner blue butterfly Lycaeides melissa samuelis (Lepidoptera). Hereditas 134, 271273.
Blacket, M.J., Robin, C., Good, R.T., Lee, S.F. & Miller, A.D. (2012) Universal primers for fluorescent labelling of PCR fragments – an efficient and cost-effective approach to genotyping by fluorescence. Molecular Ecology Resources 12, 456463.
Bouanani, M.A., Magné, F., Lecompte, É. & Crouau-Roy, B. (2014) Development of 18 novel polymorphic microsatellites from Coccinella septempunctata and cross-species amplification in Coccinellidae species. Conservation Genetics Resources 7, 445449.
Carlsson, J. (2008) Effects of microsatellite null alleles on assignment testing. Journal of Heredity 99, 616623.
Chapuis, M.P. & Estoup, A. (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24, 621631.
Cong, Q., Borek, D., Otwinowski, Z. & Grishin, N.V. (2015) Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Reports 10, 910919.
Cox, M.P., Peterson, D.A. & Biggs, P.J. (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11, 485.
Dakin, E.E. & Avise, J.C. (2004) Microsatellite null alleles in parentage analysis. Heredity 93, 504509.
Dharmarajan, G., Beatty, W.S. & Rhodes, O.E. (2013) Heterozygote deficiencies caused by a Wahlund effect: dispelling unfounded expectations. Journal of Wildlife Management 77, 226234.
Du, L., Li, Y., Zhang, X. & Yue, B. (2013) MSDB: a user-friendly program for reporting distribution and building databases of microsatellites from genome sequences. Journal of Heredity 104, 154157.
Earl, D.A. & vonHoldt, B.M. (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359361.
Estoup, A. & Angers, B. (1998) Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. Advances in Molecular Ecology Nato Sciences 38, 6975.
Falush, D., Stephens, M. & Pritchard, J.K. (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 15671587.
Flanagan, N.S., Blum, M.J., Davison, A., Alamo, M., Albarrán, R., Faulhaber, K., Peterson, E. & Mcmillan, W.O. (2002) Characterization of microsatellite loci in neotropical Heliconius butterflies. Molecular Ecology Notes 2, 398401.
Gaetano, J. (2013) Holm-Bonferroni Sequential Correction: An EXCEL Calculator - Version 1.2. Available online at https://www.researchgate.net/publication/242331583_Holm-Bonferroni_Sequential_Correction_An_EXCEL_Calculator_-_Ver._1.2.
Gagneux, P., Boesch, C. & Woodruff, D.S. (1997) Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Molecular Ecology 6, 861868.
Goudet, J. (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86, 485486.
Guichoux, E., Lagache, L., Wagner, S., Chaumeil, P., Leger, P., Lepais, O., Lepoittevin, C., Malausa, T., Revardel, E., Salin, F. & Petit, R.J. (2011) Current trends in microsatellite genotyping. Molecular Ecology Resources 11, 591611.
Habel, J.C., Finger, A., Meyer, M., Schmitt, T. & Assmann, T. (2008) Polymorphic microsatellite loci in the endangered butterfly Lycaena helle (Lepidoptera: Lycaenidae). European Journal of Entomology 105, 361362.
Jakobsson, M. & Rosenberg, N.A. (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 18011806.
Jiang, W., Zhu, J., Zhan, L., Chen, M., Song, C. & Yu, W. (2014) Isolation and characterization of microsatellite loci in Polytremis nascens (Lepidoptera: Hesperiidae) and their cross-amplification in related species. Applied Entomology & Zoology 49, 177181.
Jiggins, C.D., Mavarez, J., Beltran, M., McMillan, W.O., Johnston, J.S. & Bermingham, E. (2005) A genetic linkage map of the mimetic butterfly Heliconius melpomene . Genetics 171, 557570.
Jombart, T., Devillard, S., Dufour, A.B. & Pontier, D. (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101, 92103.
Jurka, J. & Pethiyagoda, C. (1995) Simple repetitive DNA sequences from primates compilation and analysis. Journal of Molecular Evolution 40, 120126.
Kirk, H., Dorn, S. & Mazzi, D. (2013) Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecology 13, 12.
Lebigre, C., Turlure, C. & Schtickzelle, N. (2015) Characterisation of sixteen additional polymorphic microsatellite loci for the spreading but locally rare European butterfly, Brenthis ino (Lepidoptera: Nymphalidae). European Journal of Entomology 112, 389392.
Li, X., Fan, D., Zhang, W., Liu, G., Zhang, L., Zhao, L., Fang, X., Chen, L., Dong, Y. & Chen, Y. (2015) Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nature Communications 6, 8212.
Meglécz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N. & Martin, J.F. (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26, 403404.
Park, S.D.E. (2001) Trypanotolerance in west african cattle and the population genetic effects of selection . PhD Thesis, University of Dublin, Dublin, Ireland.
Pavinato, V.A.C., Silva-Brandao, K.L., Monteiro, M., Zucchi, M.I., Pinheiro, J.B., Dias, F.L.F. & Omoto, C. (2013) Development and characterization of microsatellite loci for genetic studies of the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). Genetics and Molecular Research 12, 16311635.
Peng, Y., Leung, H.C.M., Yiu, S.M. & Chin, F.Y.L. (2010) IDBA – a practical iterative de Bruijn Graph De Novo Assembler. Lecture Notes in Computer Science 6044, 426440.
Primmer, C.R., Møller, A.P. & Ellegren, H. (1995) Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow Hirundo rustica . Molecular Ecology 4, 493498.
Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 7, 574578.
Quaintance, A.L. & Wood, W.B. (1916) Laspeyresia molesta, an important new insect enemy of the peach. Journal of Agricultural Research 7, 373378.
Raymond, M. & Rousset, F. (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.
Rosenberg, N.A. (2004) distruct : a program for the graphical display of population structure. Molecular Ecology Notes 4, 137138.
Rothschild, G.H.L. & Vickers, R.A. (1991) Biology, ecology and control of the oriental fruit moth. pp. 389412 in der Geest, L.P.S. & Evenhuis, H.H. (Eds) Tortricid Pests: Their Biology, Natural Enemies and Control. Amsterdam, Elsevier.
Rousset, F. (2008) genepop ’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8, 103106.
Schuelke, M. (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18, 233234.
Silva Brandão, K.L., Brandão, M.M., Omoto, C. & Sperling, F.A. (2015) Genotyping-by-sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae). Evolutionary Applications 8, 476485.
Sinama, M., Dubut, V., Costedoat, C., Gilles, A., Junker, M., Malausa, T., Martin, J.-F., Neve, G., Pech, N., Schmitt, T., Zimmermann, M. & Meglecz, E. (2011) Challenges of microsatellite development in Lepidoptera: Euphydryas aurinia (Nymphalidae) as a case study. European Journal of Entomology 108, 261266.
Sousa, S.N.D., Finkeldey, R. & Gailing, O. (2005) Experimental verification of microsatellite null alleles in Norway Spruce (Picea abies [L.] Karst.): implications for population genetic studies. Plant Molecular Biology Reporter 23, 113119.
Timm, A.E., Geertsema, H. & Warnich, L. (2008) Population genetic structure of Grapholita molesta (Lepidoptera : Tortricidae) in South Africa. Annals of the Entomological Society of America 101, 197203.
Torriani, M.V., Mazzi, D., Hein, S. & Dorn, S. (2010) Structured populations of the oriental fruit moth in an agricultural ecosystem. Molecular Ecology 19, 26512660.
Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shipley, P. (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538.
Wahlund, S. (1928) Zusammensetzung von Populationen und Korrelationserscheinungen von Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11, 65106.
Wang, Y.-Z., Cao, L.-J., Zhu, J.-Y. & Wei, S.-J. (2016) Development and Characterization of Novel Microsatellite Markers for the Peach Fruit Moth Carposina sasakii (Lepidoptera: Carposinidae) using next-generation sequencing. International Journal of Molecular Sciences 17, 362.
Wang, Z. (1994) The genetic bases of allozyme analysis (Part 2). Chinese Biodiversity 2, 213219.
Wei, S.J., Cao, L.J., Gong, Y.J., Shi, B.C., Wang, S., Zhang, F., Guo, X.J., Wang, Y.M. & Chen, X.X. (2015) Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Molecular Ecology 24, 40944111.
Yang, X.M., Sun, J.T., Xue, X.F., Zhu, W.C. & Hong, X.Y. (2012) Development and characterization of 18 novel EST-SSRs from the western flower thrips, Frankliniella occidentalis (Pergande). International Journal of Molecular Sciences 13, 28632876.
You, M., Yue, Z., He, W., Yang, X., Yang, G., Xie, M., Zhan, D., Baxter, S.W., Vasseur, L. & Gurr, G.M. (2013) A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics 45, 220225.
Zhang, D.X. (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends in Ecology & Evolution 19, 507509.
Zheng, Y., Peng, X., Liu, G., Pan, H., Dorn, S. & Chen, M. (2013) High genetic diversity and structured populations of the oriental fruit moth in its range of origin. PLoS ONE 8, e78476.
Zheng, Y., Qiao, X., Wang, K., Dorn, S. & Chen, M. (2015) Population genetics affected by pest management using fruit-bagging: a case study with Grapholita molesta in China. Entomologia Experimentalis et Applicata 156, 117127.

Keywords

Type Description Title
WORD
Supplementary materials

Song supplementary material
Tables S1-S3

 Word (551 KB)
551 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed