Skip to main content Accessibility help

Novel host immune evasion strategy of the endoparasitoid Drino inconspicuoides

  • K. Yamashita (a1), K. Zhang (a1), R.T. Ichiki (a2), S. Nakamura (a3) and S. Furukawa (a4)...


The tachinid fly Drino inconspicuoides (Diptera: Tachinidae) is an ovolarviparous endoparasitoid whose larvae develop in the host haemocoel and avoids the host immune system. In this study, we investigated the immune evasion mechanisms of this species during infestation in the host Mythimna separata (Lepidoptera: Noctuidae). We discovered a unique ‘cloak’ that surrounded D. inconspicuoides larvae that penetrated into the host and determined through genomic polymerase chain reaction analysis that this structure originated from the host rather than the tachinid. The ‘cloak’ contained both haemocytes and fat body cells from the host, with the haemocytes assembling around the larvae first and the fat body cells then covering the haemocyte layer, following which the two mixed. Living D. inconspicuoides larvae that were wrapped in the ‘cloak’ were not melanized whereas encapsulated dead larvae were melanized, suggesting that this structure contributes to the avoidance of host immune reactions.


Corresponding author

*Author for correspondence Phone: +81-29-853-4706 Fax: +81-29-853-4706 E-mail:


Hide All
Baranov, N. (1934) Messages about gezucktete oriental larvaevoriden (Insecta: Diptera). Entomologische Nachrichten 8, 4149.
Chen, C.H., Sun, L. & Mochly-Rosen, D. (2010) Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovascular Research 88, 5157.
Dindo, M.L. (2011) Tachinid parasitoids: are they to be considered as koinobionts? BioControl 56, 249255.
Dowden, P.B. (1934) Zenillia libatrix Panzer, a tachinid parasite of the gypsy moth and the brown-tail moth. Journal of Agricultural Research 48, 97114.
Dubovskii, I.M., Grizanova, E.V., Chertkova, E.A., Slepneva, I.A., Komarov, D.A., Vorontsova, Ya.L. & Glupov, VV. (2010) Generation of reactive oxygen species and activity of antioxidants in hemolymph of the moth larvae Galleria mellonella (L.) (Lepidoptera: Piralidae) at development of the process of encapsulation. Journal of Evolutionary Biochemistry and Physiology 46, 3543.
Dudzic, J.P., Kondo, S., Ueda, R., Bergman, C.M. & Lemaitre, B. (2015) Drosophila innate immunity: regional and functional specialization of prophenoloxidases. BMC Biology 13, 81.
Gardenghi, G. & Mellini, E. (1995) Note sul canale alimentare delle larve del parassitoide Exorista larvarum (L.) (Dipt. Tachinidae). Bollettino dell'Istituto di Entomologia “Guido Grandi” University of Bologna 49, 197209.
Hayakawa, Y. (1986) Inhibition of lipid transport in insects by a factor secreted by the parasite, Blepharipa sericariae. FEBS Letters 195, 122124.
Hirose, Y. (2005) Discovery of insect parasitism and subsequent development of parasitoid research in Japan. Biological Control 32, 4956.
Ichiki, R. & Shima, H. (2003) Immature life of Compsilura concinnata (Meigen) (Diptera: Tachinidae). Annals of the Entomological Society of America 96, 161167.
Ishihara, T., Maruyama, Y. & Furukawa, S. (2017) Gene expression and molecular characterization of a novel C-type lectin, encapsulation promoting lectin (EPL), in the rice armyworm, Mythimna Separata. Insect Biochemistry and Molecular Biology 89, 5157.
Ji, Y-J., Zhang, D-X. & He, L-J. (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Molecular Ecology Notes 3, 581585.
Kalyebi, A. & Nakamura, S. (2006) The biology of the parasitoid fly Drino inconspicuoides (Diptera: Tachinidae) in the host Mythimna separata (Lepidoptera: Noctuidae). Applied Entomology and Zoology 41, 365370.
Kathirithamby, J., Ross, L.D. & Johnston, J.S. (2003) Masquerading as self? Endoparasitic Strepsiptera (Insecta) enclose themselves in host-derived epidermal bag. Proceedings of the National Academy of Sciences of the United States of America 100, 76557659.
Lackie, A.M. (1988) Immune mechanisms in insects. Parasitology Today 4, 98105.
Lavine, M.D. & Strand, M.R. (2002) Insect hemocytes and their role in cellular immune responses. Insect Biochemistry and Molecular Biology 32, 12371242.
Michalková, V., Valigurová, A., Dindo, M.L. & Vanhara, J. (2009) Larval morphology and anatomy of the parasitoid Exorista larvarum (Diptera: Tachinidae), with an emphasis on cephalopharyngeal skeleton and digestive tract. Journal of Parasitology 95, 544554.
Moreau, S.J.M. & Asgari, S. (2015) Venom proteins from parasitoid wasps and their biological functions. Toxins (Basel) 7, 23852412.
Namba, O., Nakamatsu, Y., Tateishi, K., Miura, K. & Tanaka, T. (2009) Cuticular encystment of Autographa nigrisigna eggs by epidermal cell migration. Journal of Insect Physiology 55, 629636.
Nappi, A.J., Vass, E., Frey, F. & Carton, Y. (1995) Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. European Journal of Cell Biology 68, 450456.
Pech, L.L. & Strand, M.R. (2000) Plasmatocytes from the moth Pseudoplusia includens induce apoptosis of granular cells. Journal of Insect Physiology 46, 15651573.
Ribeiro, C. & Brehélin, M. (2006) Insect haemocytes: what type of cell is that? Journal of Insect Physiology 52, 417429.
Salt, G. (1968) The resistance of insect parasitoids to the defence reactions of their hosts. Biological Reviews 43, 200232.
Satyavathi, V.V., Minz, A. & Nagaraju, J. (2014) Nodulation: an unexplored cellular defense mechanism in insects. Cellular Signalling 26, 17531763.
Shima, H. (1999) Host-parasite catalog of Japanese Tachinidae (Diptera). Makunagi/Acta Dipterologica 1, 1108.
Stireman, J.O. & Singer, M.S. (2003) Determinants of parasitoid-host associations: insights from a natural tachinid-lepidopteran community. Ecology 84, 296310.
Stireman, J.O., O'Hara, J.E. & Wood, D.M. (2006) Tachinidae: evolution, behavior, and ecology. Annual Review of Entomology 51, 525555.
Yamaguchi, K., Matsumoto, H., Ochiai, M., Tsuzuki, S. & Hayakawa, Y. (2012) Enhanced expression of stress-responsive cytokine-like gene retards insect larval growth. Insect Biochemistry and Molecular Biology 42, 183192.


Novel host immune evasion strategy of the endoparasitoid Drino inconspicuoides

  • K. Yamashita (a1), K. Zhang (a1), R.T. Ichiki (a2), S. Nakamura (a3) and S. Furukawa (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed