Skip to main content Accessibility help

Intra- and inter-specific variation in alarm pheromone produced by Solenopsis fire ants

  • L. Hu (a1), R.R. Balusu (a2), W.-Q. Zhang (a1) (a3), O.S. Ajayi (a2), Y.-Y. Lu (a3), R.-S. Zeng (a3) (a4), H.Y. Fadamiro (a2) and L. Chen (a1)...


Some fire ants of the genus Solenopsis have become invasive species in the southern United States displacing native species by competition. Although the displacement pattern seems clear, the mechanisms underlying competitive advantage remain unclear. The ability of ant workers to produce relatively larger amount of alarm pheromone may correspond to relative greater fitness among sympatric fire ant species. Here we report on quantitative intra-specific (i.e. inter-caste) and inter-specific differences of alarm pheromone component, 2-ethyl-3,6-dimethylpyrazine (2E36DMP), for several fire ant species. The alarm pheromone component was extracted by soaking ants in hexane for 48 h and subsequently quantified by gas chromatography-mass spectrometry at single ion monitoring mode. Solenopsis invicta workers had more 2E36DMP than male or female alates by relative weight; individual workers, however, contained significantly less pyrazine. We thus believe that alarm pheromones may serve additional roles in alates. Workers of Solenopsis richteri, S. invicta, and hybrid (S. richteri × S. invicta) had significantly more 2E36DMP than a native fire ant species, Solenopsis geminata. The hybrid fire ant had significantly less 2E36DMP than the two parent species, S. richteri and S. invicta. It seems likely that higher alarm pheromone content may have favored invasion success of exotic fire ants over native species. We discuss the potential role of inter-specific variation in pyrazine content for the relationship between the observed shifts in the spatial distributions of the three exotic fire ant species in southern United States and the displacement of native fire ant species.


Corresponding author

*Author for correspondence Phone/Fax: +86-10-64807780 E-mail:


Hide All

L. Hu, R.R. Balusu, and W.-Q. Zhang contributed equally to this work.



Hide All
Ascunce, M.S., Yang, C.-C., Oakey, J., Calcaterra, L., Wu, W.-J., Shih, C.-J., Goudet, J., Ross, K.G. & Shoemaker, D. (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331, 10661068.
Attygalle, A.B. & Morgan, E.D. (1984) Chemicals from the glands of ants. Chemical Society Reviews 13, 245278.
Blum, M.S. (1969) Alarm pheromones. Annual Review of Entomology 14, 5780.
Blum, M.S. (1970) The chemical basis of insect sociality. pp. 6194 in Beroza, M. (Ed.) Chemicals Controlling Insect Behavior. New York, Academic Press.
Blum, M.S. (1985) Alarm pheromone. pp. 194224 in Kerkut, G.A. & Gilbert, L.I. (Eds) Comprehensive Insect Physiology Biochemistry and Pharmacology. New York, Pergamon Press Inc.
Blum, M.S., Snelling, R.R., Duffield, R.M., Herman, H.R. Jr. & Lloyd, H.A. (1988) Mandibular gland chemistry of Camponotus (Myrmothrix) abdominalis: chemistry and chemosystematic implications (Hymenoptera: Formicidae). pp. 481490 in Trager, J.C. (Ed.) Advances in Myrmecology. New York, E. Brill Publishing.
Brand, J.M., Duffield, R.M., MacConnell, J.G., Blum, M.S. & Fales, H.M. (1973) Caste-specific compounds in male carpenter ants. Science 179, 388389.
Buechel, S.D., Wurm, Y. & Keller, L. (2014) Social chromosome variants differentially affect queen determination and the survival of workers in the fire ant Solenopsis invicta. Molecular Ecology 23, 51175127.
Buss, L.W. (1981) Group living, competition, and the evolution of cooperation in a sessile invertebrate. Science 213, 10121014.
Calabi, P. & Porter, S.D. (1989) Worker longevity in the fire ant Solenopsis invicta: ergonomic considerations of correlations between temperature, size and metabolic rates. Journal of Insect Physiology 35, 643649.
Callcott, A.-M.A. & Collins, H.L. (1996) Invasion and range expansion of imported fire ants (Hymenoptera: Formicidae) in North America from 1918–1995. Florida Entomologist 79, 240251.
Callcott, A.-M.A., Porter, S.D., Weeks, R.D. Jr., Graham, L.C.F., Johnson, S.J. & Gilbert, L.E. (2011) Fire ant decapitating fly cooperative release programs (1994–2008): two Pseudacteon species, P. tricuspis and P. curvatus, rapidly expand across imported fire ant populations in the southeastern United States. Journal of Insect Science 11, 125.
Chen, L., Hu, Q.-B. & Fadamiro, H.Y. (2010) Reduction of venom alkaloids in Solenopsis richteri ´ Solenopsis invicta hybrid: an attempt to identify new alkaloidal components. Journal of Agricultural and Food Chemistry 58, 1153411542.
Choi, M.Y. & Vander Meer, R.K. (2015) Multiple functions of fire ant Solenopsis invicta mandibular gland products. Physiological Entomology 40, 196204.
Colautti, R.I. & Richardson, D.M. (2009) Subjectivity and flexibility in invasion terminology: too much of a good thing? Biological Invasions 11, 12251229.
Diffie, S., Vander Meer, R.K. & Bass, M.H. (1988) Discovery of hybrid fire ant populations in Georgia and Alabama. Journal of Entomological Science 23, 187191.
Do Nascimento, R.R., Morgan, E.D., Billen, J., Schoeters, E., Della Lucia, T.M.C. & Bento, J.M.S. (1993) Variation with caste of the mandibular gland secretion in the leaf-cutting ant Atta sexdens rubropilosa. Journal of Chemical Ecology 19, 907918.
Fadamiro, H.Y., He, X.-F. & Chen, L. (2009) Aggression in imported fire ants: an explanation for shifts in their spatial distributions in southern United States? Ecological Entomology 34, 427436.
Fang, M. & Cadwallader, K.R. (2013) Convenient synthesis of stable deuterium-labeled alkylpyrazines for use in stable isotope dilution assays. Journal of Agricultural and Food Chemistry 61, 35803588.
Giraud, T., Pedersen, J.S. & Keller, L. (2002) Evolution of supercolonies: the Argentine ants of Southern Europe. Proceedings of the National Academy of Sciences of the United States of America 99, 60756079.
Guan, D., Lu, Y.-Y., Liao, X.-L., Wang, L. & Chen, L. (2014) Electroantennogram and behavioral responses of the imported fire ant, Solenopsis invicta Buren, to an alarm pheromone component and its analogues. Journal of Agricultural and Food Chemistry 62, 1192411932.
Hernández, J.V., Cabrera, A. & Jaffe, K. (1999) Mandibular gland secretion in different castes of the leaf-cutter ant Atta laevigata. Journal of Chemical Ecology 25, 24332444.
Holway, D.A., Lach, L., Suarez, A.V., Tsutsui, N.D. & Case, T.J. (2002) The causes and consequences of ant invasions. Annual Review of Ecology and Systematics 33, 181233.
Hughes, W.O.H., Howse, P.E. & Goulson, D. (2001) Mandibular gland chemistry of grass-cutting ants: species, caste, and colony variation. Journal of Chemical Ecology 27, 109124.
Jones, S.R. & Phillips, S.A. (1987) Aggressive and defensive propensities of Solenopsis invicta (Hymenoptera, Formicidae) and 3 indigenous ant species in Texas. Texas Journal of Science 39, 107115.
Lach, L., Parr, C.L. & Abbott, K.L. (2010) Ant Ecology. Oxford, Oxford University Press.
Lloyd, H.A., Blum, M.S. & Duffield, R.M. (1975) Chemistry of the male mandibular gland secretion of the ant, Camponotus clarithorax. Insect Biochemistry 5, 489494.
Maschwitz, U.W. (1964) Alarm substances and alarm behaviour in social Hymenoptera. Nature 204, 324327.
Mizunami, M., Yamagata, N. & Nishino, H. (2010) Alarm pheromone processing in the ant brain: an evolutionary perspective. Frontiers in Behavioral Neuroscience 4, 28.
Morgan, E.D. (2009) Trail pheromones of ants. Physiological Entomology 34, 117.
Morrison, L.W. (2000) Mechanisms of interspecific competition among an invasive and two native fire ants. Oikos 90, 238252.
Obin, M.S. & Vander Meer, R.K. (1989) Between- and within-species recognition among imported fire ants and their hybrids (Hymenoptera: Formicidae): application to hybrid zone dynamics. Annals of the Entomological Society of America 82, 649652.
Oliver, J.B., Vander Meer, R.K., Ochieng, S.A., Youssef, N.N., Pantaleoni, E., Mrema, F.A., Vail, K.M., Parkman, J.P., Valles, S.M., Haun, W.C. & Powell, S. (2009) Statewide survey of imported fire ant (Hymenoptera: Formicidae) populations in Tennessee. Journal of Entomological Science 44, 149157.
Pitts, J.P., McHugh, J.V. & Ross, K.G. (2005) Cladistic analysis of the fire ants of the Solenopsis saevissima species-group (Hymenoptera: Formicidae). Zoologica Scripta 34, 493505.
Porter, S.D. (1992) Frequency and distribution of polygyne fire ants (Hymenoptera: Formicidae) in Florida. Florida Entomologist 75, 248256.
Porter, S.D. (2000) Host specificity and risk assessment of releasing the decapitating fly Pseudacteon curvatus as a classical biocontrol agent for imported fire ants. Biological Control 19, 3547.
Showalter, D., Troyer, E., Aklu, M., Jang, E. & Siderhurst, M. (2010) Alkylpyrazines: alarm pheromone components of the little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera, Formicidae). Insectes Sociaux 57, 223232.
Spigno, G., Tramelli, L. & De Faveri, D.M. (2007) Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering 81, 200208.
Streett, D.A., Freeland, T.B. Jr. & Vander Meer, R.K. (2006) Survey of imported fire ant (Hymenoptera: Formicidae) populations in Mississippi. Florida Entomologist 89, 9192.
Sun, Y., Shao, K.-M., Lu, Y.-Y., Shi, Q.-H., Wang, W.-K. & Chen, L. (2017) Electrophysiological and alarm behavioral responses of Solenopsis invicta Buren (Hymenoptera: Formicidae) to alkoxypyrazines. Journal of Asia-Pacific Entomology 20, 541546.
Tan, M.C., Tan, C.P. & Ho, C.W. (2013) Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. International Food Research Journal 20, 31173123.
Tschinkel, W.R. (2006) The Fire Ants. Cambridge, Harvard University Press.
Tsutsui, N.D., Suarez, A.V. & Grosberg, R.K. (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proceedings of the National Academy of Sciences 100, 10781083.
Upadhya, V., Pai, S.R. & Hegde, H.V. (2015) Effect of method and time of extraction on total phenolic content in comparison with antioxidant activities in different parts of Achyranthes aspera. Journal of King Saud University – Science 27, 204208.
Vander Meer, R.K. & Lofgren, C.S. (1988) Use of chemical characters in defining populations of fire ants, Solenopsis saevissima complex (Hymenoptera: Formicidae). Florida Entomologist 71, 323332.
Vander Meer, R.K. & Morel, L. (1998) Nestmate recognition in ants. pp. 79103 in Vander Meer, R.K., Breed, M.D., Espelie, K.E. and Winston, M.L. (Eds) Pheromone Communication in Social Insects. Boulder, Colorado, Westview Press.
Vander Meer, R.K., Preston, C. & Choi, M.-Y. (2010) Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta. Journal of Chemical Ecology 36, 163170.
Wetterer, J.K. (2011) Worldwide spread of the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae). Myrmecological News 14, 2135.
Williamson, M. (1996) Biological Invasions. London, Chapman & Hall.
Wilson, E.O. (1951) Variation and adaptation in the imported fire ant. Evolution 5, 6879.
Wilson, E.O. (1958) Origin of the variation in the imported fire ant. Evolution 7, 262263.
Wilson, E.O. (1962) Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith). 1. The organization of mass-foraging. Animal Behaviour 10, 134147.
Wilson, E.O. (1965) Chemical communication in the social insects. Science 149, 10641071.
Wojcik, D.P. (1994) Impact of the red imported fire ant on native ant species in Florida. pp. 269281 in Williams, D.F. (Ed.) Exotic Ants: Biology, Impact, and Control of Introduced Species. San Francisco, CA, Westview.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Hu et al supplementary material
Table S1

 Word (16 KB)
16 KB

Intra- and inter-specific variation in alarm pheromone produced by Solenopsis fire ants

  • L. Hu (a1), R.R. Balusu (a2), W.-Q. Zhang (a1) (a3), O.S. Ajayi (a2), Y.-Y. Lu (a3), R.-S. Zeng (a3) (a4), H.Y. Fadamiro (a2) and L. Chen (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.